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A B S T R AC T

Acquiring precise self-motion estimates from monocular visual input is an import
problem in many SLAM (Simultaneous Localization And Mapping) systems. In
this thesis, I present a novel biologically inspired model to increase the accuracy
of those estimates. The model fuses two different processing paths, each of which
yields an individual estimate of the self-motion. One path uses a template model
of cortical area MST, the other path the epipolar geometry. Fusion of the two
estimates is carried out by a simple head direction cell network. Augmented
by a prediction signal, the fused estimate is used as feedback to the individual
paths. In simulations, I can show that the feedback is beneficial to the self-
motion estimation process. Consequently, the model yields a higher accuracy
when compared to results without feedback. The model can serve to inspire
real-time capable algorithms in robotics, or to guide research in neuroscience.
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1I N T R O D U C T I O N T O T H E
B I O L O G I C A L LY I N S P I R E D M O D E L
FO R V I S U A L LY D R I V E N
N AV I G AT I O N

Many autonomous robots or animals use visual information for dead-reckoning.
They process visual cues such as certain landmarks to establish intelligence on
their movement and spatial location. If no map is available previously, the area
needs to be dynamically mapped. For instance, an animal which is forced to
increase its habitat due to food shortage needs to learn the new places in which
it preys. Otherwise, homing would not be possible. Another example is a service
robot that is deployed in many different buildings. It is often too costly or even
not possible at all to create maps in advance. As a consequence, both need to
solve the problem of simultaneous localization and mapping (SLAM1).
Knowledge about the self-motion is required in most technical solutions to

SLAM. In fact, a higher precision of this information can help to improve the
quality of the map. Biological systems are able to accurately integrate angular
and linear motion to form a ”cognitive map” of the environment [MBJ+06]. The
question arises if biological mechanisms can be used to improve the self-motion
estimate that is required in technical solutions to SLAM.

spatial representation in the rodent brain

There is a variety of cells in the rodent brain2 that code for pose, spatial location
and self-motion. They are believed to help the animal navigate and integrate
different parts of its movement. For instance, place cells or grid cells have a
direct relation to the environment in which a rat moves [MKM08]. Imagine a
rat moving through an area while a recording of the neuronal activity in the
rat’s hippocampus is conducted. The results show that one specific place cell
discharges maximally when the rat is positioned in one certain area, which is
approximately circular to some radius. As soon as the rat leaves this area, the

1 Many authors refer to the term as Self-Localization and Mapping. In most cases, the two
terms can be used interchangeably.

2 Recent research focuses on the rodent brain. However, some of the described neurons have
already been found in the primate brain. See, for example, [Rol99].
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2 introduction

Figure 1.1: Head Direction Network in the rodent brain. All cells are connected
with nearby neighbors. For visibility reasons, few connections of only one cell
are shown. Cells with warmer colors are more active than cells with colder
colors. Head direction (HD) cells have a preferential tuning towards a certain
direction. Thus, they will only be active when the rat’s pose describes a certain
orientation. As soon as the rat turns in another direction, the HD cell with
the corresponding tuning discharges maximally. The Figure contains only a
simple version of a head direction network, they are more complex in nature.
(cf. [MBJ+06])

neural activity of this place cell drops while the activity of another place cell
increases. The area in which a place cell discharges is called place field. Place
fields of different place cells overlap, and exist in differing sizes. In contrast to
place cells, grid cells have multiple fields in which they are active. The grid
fields form a repeating hexagonal pattern, which is the name origin for these
cells. Beside those two examples, there are many more cells coding for different
portions of a pose and spatial representation.
Head direction (HD) cells act like a compass. They yield an information about

the rat’s heading direction, but they do not depend on magnetic information.
HD cells are primarily fed by allothetic3 visual input, but receive activity from
idiothetic motion cues as well [JS98]. As a consequence of the input, the state
of the HD cells (or HD network) changes. The HD network thus is an integrator
of the rotational information of self-motion. Only those cells are active whose
preferential tuning corresponds to the integrated state. An example of the
change of the internal state is shown in Figure 1.1. There are many different
mathematical models available for HD cells, e.g. [RET96], and simulated HD
networks were already used for robotic orientation [DLBA04]. However, in which
way this information is correlated with other spatial information and precisely
in which places the integrated HD state information is used in other parts of
the brain is still up to discussion.

3 Allothetic information originates externally from the agent. Idiothetic information in
contrast originates from within the agent. For instance, the vestibular system yields
angular information of the agent’s motion.
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Apparently, the rodent brain is capable of solving the SLAM problem. Each
time a new environment is entered it must be dynamically mapped when, for
instance, an animal preys on food.

a short survey of different slam methods

Many different technical solutions for SLAM were proposed. In fact, a review
of the whole research area is not feasible. Instead, a list of selected methods
is presented in Table 1.1 and continued in Table 1.2. Note that the Tables
span over multiple pages. The list does not claim to be complete but highlights
approaches to SLAM that use differing internal mechanisms.
Relating the presented methods to a biological context is difficult. Not every

method nor its internals have a direct correspondence in the biological realm.
Nevertheless, Figure 1.2 gives an overview how the models relate to each other
and in which way they can be viewed in neurophysiological terms. Not every
model establishes a full system for visual navigation but details only a small
number of components though. For example, MoreVision is an overview of dif-
ferent visual processing methods. In contrast, RatSLAM is an implementation
of a biologically inspired model which encompasses many of the items of Figure
1.2. The Figure demonstrates that SLAM research covers a broad range of dif-
ferent topics. However, there are still topics left open which could directly lead
to an improvement of different models.
According to Figure 1.2, there is no direct link from visual odometry back to

the sensory system. The question arises if such a feedback would improve the
accuracy of self-motion estimates.

In this thesis I suggest a biologically inspired model which improves self-
motion estimates with the help of feedback. The main source of input to the
model is visual data. In addition to estimating the self-motion, it investigates
the possibility of fusing different estimates within a very simple model of head
direction cells. Thus, it tries to answer the following primary questions: Is it
possible to fuse sensory information in a very simple head direction cell network?
Will the fusion improve the quality of estimates? Is a feedback from this head
direction network to upstream areas beneficial to the estimation process? To
answer these questions, a complex model of self-motion estimation needs to
be implemented. All individual parts have to be analyzed separately and in
combination.
The proposed model has a versatile impact. For instance, it may be used on

robotic platforms that are used for life-long service. Opposed to other models,
it does not constantly increase its memory consumption over time. In addition,
the model hints to possible connections in the rodent and primate brain. The
findings may guide neurophysiological research to investigate the dependency of
different cortical areas.
Chapter 2 will detail the proposed model. After giving an overview of the

complete structure, each submodule will be detailed. In addition, error metrics
that are required to analyze the model’s behavior will be presented. The results
are exposed in Chapter 3: at first, examinations of different individual modules
are given, then of the whole model. Subsequently, Chapters 4 and 4.2 will give
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Table 1.1: Comparison of different technical SLAM approaches. Note that the
Table spans over multiple pages. Abbreviations and used terms: IMU – Inertial
Measurement Unit; special world – an indoor environment explicitly designed
for the system.

Name Sensors World Method Odometry Visual Processing Comment
GammaSLAM
[MHB+08]

two stereo
cams,
IMU

outdoor Rao-Blackwellized particle
filter; stores height
variances to a grid map

visual odometry
by feature
tracking

corner detector; estimates
ego-motion by 3D feature
positions determined by
stereo cams

in contrast to regular grid
maps: does not assume flat
surfaces or that a cell is free
or occupied

FrameSLAM
[KA08], [AKB08],
[KAS07], [EMC09]

stereo,
applicable
to mono

indoor,
outdoor

estimates frame-to-frame
motion; calculates
nonlinear optimization
problem (least squares)

visual: stereo
matching

stereo matching; CenSurE
features

stores subset of frames
(skeleton) as constraints for
least squares

RatSLAM [MW10] mono indoor,
outdoor

uses place cells and head
direction cells (named
PoseCells) and
distinguishable views to
code for a place

wheel encoder or
simple visual

row-wise cross correlation
of input images

stores experiences in a
graph similar to View
Graphs, but with distance
information

View Graphs
[FSG+97]

mono special creates undirected graph
from distinguishable views

cross correlation of
horizontal pixel line

does not store distances,
nodes contain only inform-
ation about views

Geometric
Module [SCS+09]

mono virtual similar to RatSLAM, but
uses grid cells and place
cells

”self-motion
input”; assumed:
Exact value

Gabor filter bank, cross
correlation of their output

place cells are recruited
during learning

Brain-Based
[KSN+05]

mono,
infrared

special neural simulation of
different parts of the
human brain

wheel encoder neural modeling: V1/2/4;
Gabor filters

Vision-Based
SLAM [LBJL07]

mono,
stereo,
IMU

stereo: Harris Features,
6DoF; mono: delayed
matching (feature position
calculated by multiple
frames)

odometry by
visual motion

stereo: Harris Detector,
cross correlation, interest
point group matching;
uses mono for feature
initialization; computes
visual motion by feature
tracking

uses the Extended Kalman
Filter for mapping

Bayesian Surprise
[RD09]

8-camera
rig

indoor Rao-Blackwellized particle
filter that uses Bayesian
Surprise for landmark
detection

features: Harris,
Maximally Stable
External Regions (MSER);
Multivariate Polya Model

builds topological map
with particle filter
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Table 1.2: Continuation of Comparison Table 1.1. Note that the Table spans
over multiple pages. Abbreviations and used terms: IMU – Inertial Measure-
ment Unit; special world – an indoor environment explicitly designed for the
system.

Name Sensors World Method Odometry Visual Processing Comment
VecSLAM [SK09] Laser

Range
Finder

indoor line segments, dubbed
vectors, are tracked and
used for SLAM

”from robot (10%
error)”

vectors are aligned in a
global coordinate system;
uses recursive least squares
for vector merging

Parallel [KM07] mono indoor inspired by bundle
adjustment and structure
from motion; builds
feature map with help of
RANSAC

Fast-10 corner detector,
Shi-Tomasi features

is more concerned about
Augmented Reality than
robotic SLAM

More Vision
[LLB08]

mono,
stereo

indoor,
outdoor

Harris, SIFT, Line
Features, Plane Features,
First Order Geometric
Primitives

paper is mostly about vis-
ion techniques for SLAM

CV Methods
[MRS06]

stereo outdoor Iterative Closes Point
(ICP)

ICP feature tracking
(Shi-Tomasi) based on
cross correlation

paper is about visual odo-
metry for SLAM

Artificial [BKS03] mono indoor uses artificial landmarks
to estimate position

determines region of
interest with artificial
landmark and computes
the landmark extents to
guess distance

Small Body
[JCM00]

mono,
stereo

space combination of feature
tracking and triangulation
by landmarks

visual (feature
tracking)

Benedetti and Perona;
Shi-Tomasi features;
compares detected
landmarks against
database

needs human preprocessing
of database

Markerless [LH09] mono indoor paper doesn’t exactly tell
how to get from mapped
features to pose estimate

Handy AR, SIFT,
Shi-Tomasi; Lucas-Kanade
on tracked SIFT features

builds 3D reference frame
from initialization
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insight into the results, why they emerge and afterward summarize the findings.
In addition, their relation to biological models will be discussed. Then, the
findings will be related to the initial research questions of this thesis. Finally,
Chapter 5 will point out new research that is possible with the new model.

Figure 1.2: (next page) SLAM algorithms and their relation to a biological
context. Note that not all SLAM approaches listed in Tables 1.1 and 1.2 were
included because not every approach can be mapped to a biological overview.
In addition, the methods listed in the legend do not necessarily name their
computational steps similarly. Hence, the submodules and computational steps
were regarded as matching if their main purposes reflect resembling tasks. The
Figure contains steps which are not used in the referenced technical SLAM
literature. For example, steps 1-3 are not employed. However, such steps are
described in literature about biological models that are not necessarily related
to technical SLAM. For instance, steps 1-3 are reflected in [Per92].
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2B U I L D I N G B L O C K S O F T H E
F E E D B AC K D R I V E N M O D E L FO R
E G O - M O T I O N E S T I M AT I O N

Chapter 1 shows that the problem of simultaneous localization and mapping
is intensely researched. Yet there are different areas open to investigation, es-
pecially when the models are viewed from a biological context. For example,
storing an experience map4 needs to have a strong influence from behavioral
systems and learning theories, because experiences might be perceived as either
good or bad. Bad experiences could have the effect of a repellor, leading to the
avoidance of certain areas in an animal’s habitat. To be able to avoid hazardous
areas, a precise knowledge about their positions is necessary.
Problems in existing models like RatSLAM and recent findings in the rodent

brain suggest that exact positional information is of high relevance. I was able
to show that – besides other issues with RatSLAM5 – the experience map would
benefit from more accurate estimates of the agent’s position. One of the internal
mechanism of RatSLAM to maintain the experience map would highly profit
from more exact estimates of the agent’s position. The procedure, which is
based on a path relaxation algorithm, causes the experience map to degenerate
over time when there are not enough experiences that can be linked together.
Such experience links are created when the agent travels from one experience to
another. Having more precise estimates of the position would reduce the impact
of the relaxation algorithm or make it possible to completely avoid it.
As a consequence, I propose a new model of ego-motion (or self-motion) es-

timation which will improve the quality of the estimates and, as a an effect
thereof, position estimates. The model suggests a feedback from a head direc-

4 An experience is a (directed or undirected) graph which acts like a map. A map entry may
consist of different details. In RatSLAM, each experience map entry contains information
about the most active PoseCell, a scene description and links to other experiences in the
graph. A PoseCell is the combination of place and head direction cells.

5 The thesis was supposed to be an extension to RatSLAM. However, the implementation
which is provided on http://ratslam.itee.uq.edu.au doesn’t follow the referenced
RatSLAM literature. In fact, some of the most essential steps described in [Mil08] are
missing. Hence, I implemented RatSLAM, precisely following the literature. The system
did not work as expected and an investigation of the model revealed several problems.
Consequently, it was necessary to detach the thesis from RatSLAM and build the model
from scratch.

11
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12 building blocks of the model

tion cell network to upstream areas. Although this is biologically inspired, such
a feedback was not yet shown to exist in neurophysiology.
After giving a general overview of the model in the first section, the following

ones delve into details of specific modules. If not otherwise specified, the soft-
ware used for the different building blocks was written by myself. In addition
to the modules, it was necessary to write different tools which are described in
the appendix, Chapter C.

2.1 MODEL OVERVIEW

The model is based on the idea that a feedback from a head direction cell
network could be profitable for upstream cortical areas. For instance, cortical
area MST (Medial Superiour Temporal) is believed to play a major role in
the estimation of ego-motion (or self-motion) from optical flow. Optical flow
contains both a rotational and a translational component which give hints to
the self-motion. With the help of a feedback or prediction, certain parts of the
optical flow could be removed previously to extracting an ego-motion estimate
in MST. Consequently, it should be possible to analyze the remaining flow with
a higher precision while the number of computations required stays constant.
Template models, like the one described in Section 2.4, require a lot of compu-

tations to calculate estimates for the translational and rotational part of optical
flow. A feedback in the form of a rotational prediction could help to increase
the precision of such models while leaving the number of required computations
constant – or even reduce it. For example, estimating the rotational compon-
ent of optical flow with the help of the template model of Section 2.4 usually
requires to sample optical flow that corresponds to a range of possible rotations.
This is at best done linearly in order to prevent the miss of a certain rotation. It
would, however, require more computations when a higher precision is wanted.
Using a feedback which predicts the next movement, the rotational component
of the optical flow could be removed almost entirely. The remaining rotational
part would reflect the error of the feedback signal, but it could be analyzed with
a very high precision while the number of computations is not increased.
Hence, I propose a model for self-motion estimation based on the idea of such

a feedback. An overview of the model is given in Figure 2.1.

2.1.1 MODEL DESCRIPTION

At the beginning of the model, visual input is forwarded to two separate pro-
cessing streams: 1) template model path and 2) epipolar path. They are named
after their main components of ego-motion estimation.
The template model path estimates optical flow from the input data using a

template model of cortical area MST. Flow estimates are proximately passed
to the template model. The template model establishes an estimate of the
agent’s motion from optical flow. Although the path produces a translational
and a rotational estimate, analysis of the model that utilizes a subsequent head
direction network uses only the rotational estimate. Due to restrictions of the
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template model, the translation is a direct consequence of the estimated rotation.
The estimate of the agent’s translation is produced with the help of the head
direction network later in the model.
The other path, which is called epipolar path, detects and tracks features

between frames. The method to detect and track features is CenSurE. Feature
positions can be used subsequently to reconstruct the translation and rotation
between two frames using epipolar geometry. The processing path issues an
estimate of both the rotation and the translation.
The integration, or fusion, of both rotational estimates of the preceding paths

is the next step. The two different streams produce two confidence measures,
which have to be taken into account while merging the estimates. This is fol-
lowed by forwarding the fused value to the head direction network. Figure 2.1
shows the fusion module as a dashed box because the fusion may be an extension
to the head direction network.
The head direction value, which can be extracted from the head direction

cells, is used to form an estimate of the agent’s translation. It is combined with
the translational estimate coming from the epipolar path. Focus was not set
onto this part, thus simply a weighted average is calculated. The weights are
the confidence values which were already used for the fusion of the rotational
estimates.
For the next iteration of the estimation process, a prediction signal is applied

to the head direction network. The difference between the head direction state
before and after the prediction signal is used as a feedback into the preceding
computational steps.
The prediction signal could come from different sources. One possibility is an

inertial measurement unit that responds quickly to changes of position. Hence,
it can be applied to the head direction network before ego-motion estimation
in upstream areas is carried out. Different idiothetic cues were discussed, e.g.
in [JS98]. Another possibility is to iterate the network twice: first without
feedback and a second time with feedback. The latter way requires upstream
areas to be remodulated on-the-fly so that they can cope with the different
demands. Differences of the template model path with and without feedback
are detailed in Section 2.4.3. In the implemented model, normally distributed
noise was added to the ground truth data to form the prediction signal. The
exact specification is given in Section 3.4.
To help the orientation, the following sections will have miniature versions

of Figure 2.1 drawn to the page margins. The discussed submodule(s) will be
highlighted in terms of color. Note that the feedforward lines of the confidence
values were removed in order to make the miniatures less crowded.

2.1.2 MODEL RESTRICTIONS

In order to quantify the results without having too many parameters to set and
analyze, there were some constraints imposed on the model. It is important to
note these constraints as they have an influence on the settings and computations
of the submodules. The constraints are:

• The agent travels on a curvilinear path.
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Figure 2.1: Model Overview. The model can be logically split into two pro-
cessing paths due to their primary modules for ego-motion estimation: 1) tem-
plate model path and 2) epipolar path.
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Figure 2.2: World and camera setup. The agent is restricted to move parallel
to the xz plane. The pinhole camera is defined by a camera coordinate system
with origin C and focal length fc. The camera is looking along its negative z axis.
Objects (points p1, . . . , pn ∈ R3 in the image) are projected perspectively onto
the image plane Ic. The path on which the camera C is moving is curvilinear.
In the image, this path is colored green and starts at S.

• The curvilinear path is traversed tangential to the path.

• Movement is restricted to the xz plane, where x points to the right and
z points backwards. The y axis points upwards. Thus, a right-handed
coordinate system is used.

• The only allowed rotations are around the y axis. Such rotations are often
referred to as yaw rotations in the literature.

• The agent moves through a rigid scene, where no other objects are moving.

• The agent moves with a constant speed of 1ms .

2.2 MODEL ENVIRONMENT AND INPUT DATA

In order to investigate the different parts of the model, both analytical and
virtual input data was used. Analytical data is, for example, optical flow that
was generated for a certain camera movement but without a real structure that
generates the flow. Virtual optical flow, on the other hand, is computed for a
virtual environment that was modeled using the software blender.

The agent travels in an environment where the ground plane is defined by
the x and z axis, the up-vector of the world is the y axis. This setup and the
configuration of the camera is shown in Figure 2.2. The calculations in the
following sections of this chapter assume a right-handed coordinate system.
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2.2.1 ANALYTICAL INPUT DATA

flow

Analytical optical flow was calculated according to [LP80]. Point coordinates
were selected so that they form a regular grid on the retinal plane. Depth values
were selected randomly in the range [0.5, 30] m. Figure 2.3 shows examples of
analytical optical flow for pure translation, pure rotation and the combined
result.

features

In order to create analytical features, 1000 points were randomly scattered in
the range x ∈ [−25, 25], y ∈ [−10, 10] and z ∈ [−25, 25]. The resulting point
cloud is shown Figure 2.4a. The agent travels inside the point cloud, its max-
imal distance from the center is 7.5 m. Consequently, there are about 50 to
150 points projected onto the image plane per view. This number resembles
the amount of features found in a building of the Ulm University when using
CenSurE. CenSurE is described in detail in Section 2.5. Point correspondences
can be calculated from the analytical feature positions for two different views.
A correspondence example is shown in Figure 2.4b.

2.2.2 VIRTUAL INPUT DATA

In addition to analytical data, I modeled a virtual scene of an office building in
blender. The textures and 3D models were placed in order to yield a certain
number of features when using CenSurE. The goal was to achieve approximately
the same number of features for both real world footage from inside the building
of Ulm University, and the virtual scene.
The agent’s trajectory inside the virtual environment is a circular path with

radius r = 7.5m. The scene was rendered with blender’s default rendering engine
and a frame rate of 10 Hz. Each frame was subsequently stored in OpenEXR
files which contain the depth information in addition to the image. Hence it it
possible to compute the ground truth optical flow for the complete scene with
exrflow. More details about exrflow can be found in the Appendix, Section C.2.
In addition to ground truth optical flow, flow estimated with the help of

a biologically inspired algorithm is used. Examples for both, ground truth
and estimated optical flow, is shown in Figure 2.6, the estimation algorithm is
described in the next section.

2.3 OPTICAL FLOW ESTIMATION

Optical flow is estimated using a biologically inspired recurrent estimator, ini-
tially described in [BN07] and henceforth called MotionAlgo. The implementa-
tion that was used in this thesis was written in advance to the thesis while I was
employed as student research assistant at the Institute of Neural Information
Processing at the Ulm University.
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Figure 2.3: Analytical optical flow for a grid of size 10× 10. The retinal plane
has the upper left coordinate (−1,−1) and the lower right coordinate (1, 1). The
plots are extended for visibility reasons. (a) Optical flow for a pure translation
of 1 m forward. (b) Flow for a pure rotation of 5 degrees counter-clockwise
around the y axis. (c) Flow of the combined movement from (a) and (b).
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Figure 2.4: Analytical features. (a) Point cloud of 1000 features. The agent
is moving inside this cloud. Its maximal distance from the center is 7.5 m. (b)
Feature correspondences for two frames. Features of frame t are marked in red,
features of frame t + 1 in blue. Their correspondence lines are shown in green.
The agent’s motion was a translation of 1 m forward, 0.2 m to the right and a
rotation 2 degrees clockwise around the y axis. Note that not all features were
trackable.
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Figure 2.5: Overview of the MotionAlgo. Model area V1 estimates optical flow
for each pixel of the input image. The resulting hypotheses are forwarded to area
MT which integrates nearby areas. Hypotheses results of MT are subsequently
used in V1 to remove outliers and support matching hypotheses. (cf. [BN07])

I will only give a rough outline of the algorithm, a profound description can
be found in [BN07]. The MotionAlgo computes optical flow for two consecutive
input images by simulating cortical areas V1 and MT. Results from V1 are
projected to MT, which in turn feeds its estimates back to V1. In addition to the
following paragraphs, Figure 2.5 gives a very short overview of the MotionAlgo.
The first step in model area V1 is computing the Census Transform [ZZL94] of

each pixel of the input image. This operation creates a neighborhood descriptor
for each of the pixels. Subsequently, the descriptors of both frames are matched,
which will result in a list of possible matches per pixel. Note that this list
might be empty. Afterward, a selection process will ensure that there are only a
fixed maximum number of so-called motion hypotheses left per pixel. A motion
hypothesis is a vector containing the pixel location, a velocity vector and a
weight. The weight gives information about the ”believe, confidence or neural
activity” [BN07] of the hypothesis. If there are too many hypotheses generated
for one single pixel, the motion ambiguity is believed to be too high and all
generated hypotheses are rejected for that pixel. The overall result for model
area V1 is a sparse coding of possible motions in the input images.
Following the calculation of hypotheses on the full image scale in model area

V1, the hypotheses are forwarded to MT. The hypotheses which lie in small
receptive fields are integrated. This subsampling process yields data that is
smaller than the input size. Hypotheses will be nonlinearly enhanced and a
blurring operator is subsequently applied. This means that the velocity compon-
ents of generated hypotheses influence each other. After the blurred hypotheses
are normalized, they are shifted according to their velocity components: For
example, take a hypothesis at location (x,y) with velocity information (vx, vy).
The hypotheses will be moved to the position (x+vx, y+vy) during the shifting
process.
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Finally, the shifted hypotheses provide feedback to model area V1, where they
will assist in the correspondence matching process. In addition to contributing
to this match selection, weights of hypotheses which were predicted according
to the computation in model area MT are nonlinearly increased.
Readouts of model area MT are used as estimated optical flow. Figure 2.6

shows example images of ground truth optical flow and estimated flow. Note
that the size of the readout of model area MT is smaller by a certain factor but
is rescaled to match the size of the ground truth optical flow. All required setup
parameters for the MotionAlgo are listed in Table A.1.

2.4 TEMPLATE MODEL FOR EGO-MOTION
ESTIMATION

Two decades ago, Perrone and Stone proposed a model to simulate cortical
area MST ([Per92], [PS94], [PS98]). MST is believed to compute self-motion
from optical flow which was previously estimated in upstream cortical areas.
They suggested to describe the processes in cortical MST with the help of so-
called template neurons. This kind of neuron responds only to optical flow that
corresponds to its very tuning. Take, for instance, a neuron which encodes for
a translation with certain speed and direction to the right and a simultaneous
rotation to the left. It will only respond maximally if the optical flow contains
components for the exact translation and rotation of its tuning.
The source code for the template model was provided by Florian Raudies. The

implementation does not exactly follow the methods presented by Perrone and
Stone but is made to work for curvilinear motions.
A template neuron needs to consider the whole input flow. The reason is the

aperture problem which is illustrated in Figure 2.7. If the neuron took only a
small portion of the flow into account, it might not necessarily yield the correct
response. For instance, a neuron which codes for a movement towards the top-
right might discharge maximally for the flow presented in Figure 2.7a although
the motion which underlies the Figure is a rotation around the z axis. Hence, a
template neuron needs to extract the precise information from the entire optical
flow for its response.
Each template neuron integrates the responses of motion detectors. Each

detector responds according to the fitting of its speed and direction tuning to
the input flow. The direction tuning of a detector is defined as

Od(∆ϕ) =
exp

(
−0.5(∆ϕ

σr
)2
)
− δ

1− δ . (2.1)

∆ϕ is the signed angular difference between the detectors preferred flow and the
input flow: σr influences the fuzziness with which the detector accepts diverging
input flow as matching. The preferred flow for a motion detector is defined by
the template neuron’s preferred motion and calculated according to [LP80]. The
detector’s speed tuning is defined as

Os(∆s) = exp
(
−0.5(∆s

σt
)2
)

, (2.2)



2.4 template model for ego-motion estimation 21

(a) (b)

(c) (d)

Figure 2.6: (a) Frame 10 and (b) Frame 11 of the office building sequence.
(c) Optical flow generated with exrflow. (d) Optical flow estimated with the
MotionAlgo. Note that the output size of the MotionAlgo is smaller than the
original input size. However, the output is rescaled to match (c). As a con-
sequence, the flow vectors in (d) are larger than those in (c). Colors are coded
according to the Middleburry color code [BSL+07]. Note that the MotionAlgo
could not estimate optical flow for the office ceiling because the ceiling-texture
produces too many ambiguities. The white spots in (c) are due to infinite depth
of the input data at these positions. There was no structure but windows giving
view to simulated sky.
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Figure 2.7: Aperture problem. (a) shows a small part of flow. The motion
coded in the four vectors might be a translation towards the top right. However,
(b) shows that the flow of originates from a rotation around the z axis. (a) is
marked in the red rectangle.

where σt serves the same purpose as σr in Equation 2.1. ∆s is the difference
between the input flow speed and the preferred speed of the motion detector
and defined as

∆s = log2

(
r

R

)
. (2.3)

In this equation, R is the detector’s preferred speed tuning and r the actual
speed of the input flow.
The motion detectors for one template neuron are tuned exactly to the neur-

ons preferred motion. Thus it is necessary to have different template neurons,
each having a set of distinct motion detectors, to estimate the agent’s transla-
tion and rotation. For instance, a template neuron which codes for a rotation
12 degrees to the right employs motion detectors that reflect the optical flow
produced for exactly this motion. In order to have a neuron which codes max-
imally for 13 degrees to the right, a different set of motion detectors is required
for this neuron.
Od and Os depend on the depth of the scene. The depth of a scene is inversely

proportional to the speed of the optical flow. Because the depth of the world
is not known in MST, different depths need to be sampled. As a consequence,
each of the described motion detectors needs to be created for each depth that
shall be sampled.
Finally, the response of a template neuron j is defined as

Rj = 1
m

m∑
i=1

(
max {Od(∆ϕ)Os(∆s)}nk=1

)
, (2.4)

where n is the number of depth samples. The implementation creates motion
detectors on-the-fly, m is thus the number of flow vectors.
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Table 2.1: Parameters for the template model.

Template Model Setup

δ 0.05
σt 0.5 [m]
σr 30 [◦]

focal length for template flow generation 2.18
sampling of the depth 2, 4, 6, 8, 16, 32, 48, 64 [m]

sampling of the azimuth angle 0 [◦]
sampling of the rotation angle −35, . . . , 35 [◦]

Due to the model constraints, only yaw rotations6 are considered. In addition,
sideways movement of the agent is ignored and hence, sampling of the azimuthal
angle can be set to zero. The results of Chapter 3 were produced with the
parameters defined in Table 2.1.

2.4.1 INTERPOLATION OF THE RESPONSE FIELD

Simply taking the rotation for which the maximally responding neuron codes
will yield problematic results. Depending on the sampling of the rotational angle,
there might be a systematic over- or underestimation introduced. Regard the
following example: sampling is set to be linear from −10 to 10 degrees and the
distance between two sampling points is 1 degree. When the exact rotation is 4.6
degrees, the maximally responding neuron most probably codes for 5.0 degrees.
As a consequence, the model will over-estimate its own rotation by 0.4 degrees.
Thus it is essential to interpolate the response field to get a proper estimate.
The response field is the entirety of the template neurons after their response
was calculated. Due to the model constraints, this field is one dimensional and
only codes for rotational values.
I formulated and implemented the following four of the different possibilities

to interpolate the response field. A schematic of the interpolation methods is
illustrated in Figure 2.8.

• simple
Interpolation is done by taking the position of the maximally responding
neuron nmax and integrating over a certain area around that position. The
dimension of the interpolation area Ωnmax is chosen to be approximately
17% of the response field around nmax. This value is chosen randomly and
results in taking an additional six neurons in each direction of the response
field to calculate the interpolated response. The lower and upper bounds
l and u for the one dimensional area Ωnmax need to be calculated carefully
in order to avoid problems at the edges of the response field. Thus, Ωnmax

contains all neurons that surround nmax.

6 A yaw rotation is the rotation around the agent’s y axis
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Figure 2.8: Schematic of the interpolation around the maximally responding
template neuron. The width d defines the number of template neurons that are
interpolated. d is set to 17% of the response field for the methods simple, gauss
near and DoG. Method gauss full interpolates the entire response field.

Let Φ(α) = (sin(α), cos(α))t be the function that takes an angle α to
its vectorial representation and Φ−1 its inverse. Let αn be the rotational
tuning of a neuron n, and wn its neural activity. The interpolated estimate
γ can henceforth be described in terms of a discrete integration

γ = Φ−1
(∑
n∈Ω

wnΦ(αn)
)

. (2.5)

• gauss near
In contrast to the simple interpolation method, the gauss near method
smooths the neural activities wi in the area Ωnmax with a Gaussian. Let
ψn be the neural activity of neuron n after discrete convolution of all
activities wi in the area Ωnmax with a Gaussian gσ, σ = 1.5. Consequently,
γ is defined as

γ = Φ−1
(∑
n∈Ω

ψnΦ(αn)
)

. (2.6)

• dog
The DoG interpolation uses a Difference of Gaussian d instead of the
Gaussian of method gauss near to convolute neural activities wi in the
area Ωnmax . d is defined as

d = 2gσ1 − 1.5gσ2 , (2.7)

where σ1 = 1.0 and σ2 = 1.5. γ is finally determined according to Equa-
tion 2.6.
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• gauss full
Instead of using only a small area Ωnmax of the response field, the gauss
full interpolation uses the whole response field for Gaussian smoothing of
the neural activities. The interpolated estimate γ is calculated according
to Equation 2.6.

2.4.2 SUBSAMPLING FROM MT TO MST NEURONS

The number of flow vectors used to compute the response can be set independ-
ently. However, using a large number of flow vectors may lead to computational
limits. The memory consumption and processing power required to calculate
the template model response is quite large. Thus it is desirable, with respect to
computational cost, to have a small number of flow vectors.
Although Perrone showed in [Per92] that a higher number of flow vectors res-

ults in a smaller error of translation estimates, I analyzed different input sizes
for rotational estimates. It may be preferable to have a small number of flow
vectors in certain cases. The results are described in detail in Section 3.2.2. In
combination with the computational limits it is necessary to subsample a larger
number of flow vectors to a smaller number. For instance, the input images
of the virtual input sequence are of size 480 × 360. Although the MotionAlgo
already reduces this size by a factor of 5 emitting 96×72 flow vectors, decreasing
the number of vectors may still be required. In addition to this example, sub-
sampling is especially needed for ground truth optical flow: exrflow computes
the optical flow for the full size of the input image.
I analyzed four different ways to subsample flow vectors. The basic meth-

ods are computation of the mean or median flow vector. Both methods were
investigated in a standard manner and, inspired by CenSurE, with overlapping
interpolation areas. Mean and averaging are very common in computer vision
task. The median vector was recently shown to be one of the best operations in
optical flow processing available [SRB10].

• mean
mean subsampling is effectively like a box filter applied to the input flow
vectors, but reduces simultaneously the number of flow vectors. The pro-
cedure can be visualized by placing a coarse grid over the input data and
averaging the vectors in each cell. Figure 2.9a depicts the method.

• median
In order to calculate the median vector, the flow vectors’ angular rep-
resentation will be calculated first. Subsequently, a median vector with
respect to the angular value can be selected. The length of the resulting
vector is the average vector length of all considered vectors. Its position
is identified with the position of the vector that has the median angular
value.

• mean overlapping and median overlapping
Inspired by CenSurE, I implemented the methods mean and median sub-
sampling additionally with overlapping areas. Each cell is extended by
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(a) (b)

Figure 2.9: Subsampling of flow vectors. (a) illustrates the subsampling of
180 to 9 flow vectors. In order to reduce the graphical complexity, only the flow
vectors of the first subsampling cell are shown. mean subsampling calculates the
mean vector of a cell whereas the median method selects the median angle and
the mean length. (b) displays the difference between the normal subsampling
cell and overlapping subsampling areas. The orange cell extends the green cell
by 40 % in each direction.

40% in each direction, mean and median vectors are computed for the
extended cells. The difference between the ”regular” methods and the
methods with overlapping areas is drawn in Figure 2.9b.

2.4.3 SAMPLING OF ROTATIONAL ANGLES IN THE
STANDARD AND FEEDBACK MODEL

There is a difference in rotational sampling between the model which does
not use feedback for the calculation and the model which uses feedback. The
feedforward-only model linearly samples in a certain range of rotations. In con-
trast to this, the feedback driven model samples only loosely for higher rotations
but densely around zero degrees. Figure 2.10 displays the sampling points for
a normal sampling and a dense sampling for rotations in the range [−35, 35]
degrees. The justification for the different sampling points is the fact that the
feedback driven model will receive different input than the feedforward-only one.
Optical flow for the feedback-model will be modulated so that the rotational
component is already removed up to a certain error. The remaining rotational
part is assumed to be very small and can be analyzed with a higher precision.
Outliers need to be taken into account, therefore sampling of higher rotational
values is needed.

To be able to compare the results of the model with and without feedback,
the number of sampling points was set to 71. Rotational sampling was designed
to lie in the range [−35, 35] degrees. To generate sampling points for the dense
sampling around zero, the function y(x) = exp (σx) − 1 with σ = 0.125 was
used. Input x is the sampling index, y(x) must be re-normalized in order that
y(m) = m. The whole procedure is presented in Algorithm 1.
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Figure 2.10: Sampling rotational values (a) without and (b) with feedback.
The model without feedback samples linearly, the model with feedback samples
densely around zero. For visibility reasons, both figures contain only 41 sampling
points. The implementation used 71 sampling points.
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input : maximum rotation sample m, odd number of sampling points n
output : List of sampling points S = {s1, . . . , sn}
X ← 1, . . . , (n− 1)/2;
// generate right-half list Sr

foreach element xi ∈ X do si ← y(xi);
// re-normalize all values in Sr

foreach element si ∈ Sr do si ← (si/max(Sr)) ∗m;
// Create final list S

for i = 1, . . . , (n− 1)/2 do
S[i] ← −sn−1

2 +1−i;
S[n− i+ 1] ← si;

end
S[(n− 1)/2 + 1] ← 0;
Algorithm 1: Generation of rotational sampling points for the feedback
driven model. The returned sampling points are symmetrical around zero
degrees.

t t + 1

α

C
α

t

translational estimaterotational estimate

Figure 2.11: Calculation of the self-motion. The curve between two points can
be calculated using the estimated rotation α and the agent’s constant speed.

2.4.4 ESTIMATE GENERATION

The self-motion estimate for the template model path is missing a further
element. In addition to the rotational component already estimated, it needs
a translational part. Note that this estimate is only used when analyzing the
individual path. However, the calculation is the same for the model that em-
ploys both paths. In this case, the rotational estimate is extracted from the
head direction network that is described further below. The translation can be
computed using the rotational estimate and the constraint that an agent, having
a constant speed, always moves tangential to a curvilinear path. For instance,
after the agent estimated its rotation, the traversed path can be calculated by
a circle. The traveled distance on the arc of that circle must reflect the agent’s
speed whereas the radius of the circle depends on the estimated rotation. Figure
2.11 provides an overview of this example.
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In order to calculate the arc length between two positions pt and pt+1 at times
t and t + 1, the speed s of the agent must be known. According to the model
constraints, s = 1

frame rate [m/frame]. Let β be the estimate for the yaw rotation,
then the radius r of the curve is defined as r = s

β . The angle α between the
vectors pointing from the two agent positions to the curve center C (see Figure
2.11) is equal to β. Finally, the translation t can be defined as

t = r

[
cos(α)
sin(α)

]
. (2.8)

The final result of the template model path is a vector e = (β, t) which
contains the estimates for the rotation and translation.

2.5 CENSURE

In order to keep the model in a manageable size, I avoided to use landmarks
that require behavioral subsystems. Researching and implementing such a sub-
system would go beyond the scope of this thesis. As a replacement, feature
detecting and tracking which can be applied on a per-frame basis was used.
The following section will describe my implementation in detail.

In [AKB08], Agrawal, Konolige and Blas propose an enhancement to the
well known feature detector SURF (Speeded Up Robust Features, [BETVG08])
called CenSurE – Center Surround Extremas. In addition to the improved de-
tector, they introduce a new descriptor for features named MU-SURF (Modified
Upright - SURF). The new descriptor opposes some problems inherent to the
standard upright descriptor when the input data contains certain frequencies.
SURF uses Haar-Wavelets to approximate the Gaussian function which is

used during feature detection. Unlike SURF, CenSurE uses Difference-of-Boxes
(DoB) or Difference-of-Octagons (DoO) to approximate a Difference of Gaus-
sians for the detection process. The latter one is more robust to rotational
transformations of the input image than DoB, but slightly slower. According to
[AKB08], both detectors yield a higher repeatability with respect to detected
features than SURF. Haar-Wavelets, DoO and DoG are illustrated in Figure
2.12. In addition to being better than SURF, its repeatability quality is higher
than other comparable methods like SIFT ([Low99]) or FAST and its extension
FASTER ([RPD10]). Despite the fact that FASTER is indeed faster in feature
detection than other known methods at the time of this writing, the higher
repeatability is preferable7. Due to those findings, and because CenSurE was
shown to work with challenging datasets in [KAS07], CenSurE was selected as
feature tracking algorithm.
Due to the fact that CenSurE and MU-SURF are not already available in

exhaustive libraries like OpenCV8, I implemented the algorithm from scratch.
More details about the technical specifics of the implementation can be found

7 A speed improvement for CenSurE is described in [EMC09]. However, this improvement
was not applied to the implementation.

8 http://opencv.willowgarage.com (visited on 2012-03-19)

http://opencv.willowgarage.com
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Figure 2.12: (a) Haar Wavelets for x and y direction. (b) Difference of Boxes
(DoB) and Difference of Octagons (DoO). (cf. [AKB08]). The filters in both
(a) and (b) collect the pixel intensities around a central pixel. In (b), the pixel
intensities for the outer and inner octagon are weighted: Let O be the outer
intensities and I the inner intensities, let a be the area of the inner octagon
and b the area of the outer octagon. The filter response is thus defined as
r = 1

|a|I−
1
|b|O. This ensures that no energy is induced by the filtering operation.

The sizes (m,n) depend on the scale of the filter. (m,n) for the inner and outer
octagon are provided in in Table 2.2.

in the Appendix, Section C.1; for all computations presented in chapter 3, the
DoO was used.

2.5.1 INTEGRAL IMAGES

The implementation uses integral images – also known as summed area tables
– to compute the DoB and DoO. For DoB, the normal (or ”regular”) integral
images are used. The regular integral image ΥI,n for input image I of width w
and height h is defined as

ΥI,n =
i≤w∑
i=0

j≤h∑
j=0

I(i, j) . (2.9)

For the computation of the DoO, right-slanted integral image ΥI,r and the left-
slanted integral image ΥI,l need to be calculated. They can be recursively defined
as

ΥI,r(x, y) = ΥI,r(x+ 1, y − 1) +
i≤x∑
i=0

I(i, y) (2.10)

ΥI,l(x, y) = ΥI,r(x− 1, y − 1) +
i≤x∑
i=0

I(i, y) , (2.11)

where ΥI,r(0, 0) = I(0, 0) and ΥI,l(0, 0) = I(0, 0). Figure 2.13 shows examples of
each of the integral images. To reduce the number of memory loads required to
compute the integral images, they can be computed all at once in a combined
function.
Using integral images ensures that the calculation of DoB or DoO are real-

izable in constant time. Proof: Given integral images ΥI,l, ΥI,r and ΥI,n. To
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Figure 2.13: Integral images. The gray areas are summed up. The regular
integral image integrates over a rectangular area up until pixel (x, y) whereas
the right-slanted integral image adds all pixels that are right-next to the pixel
in all previous lines. The left-slanted integral image adds one additional pixel
in each next row.
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H

Figure 2.14: Integration of the octagonal area A, . . . ,H requires only constant
time when using slanted integral images.

compute the integral of the octagon shown in Figure 2.14, first split the octa-
gon into an upper trapezoid U of coordinates A,B,C,D, a lower trapezoid L
of coordinates H,E, F,G and the rectangle R surrounded by A,D,E,H. Using
equations 2.9 to 2.11, it follows that

U = ΥI,l(D)− ΥI,l(C)− ΥI,r(A) + ΥI,r(B) ∈ O(1) (2.12)
L = ΥI,r(F )− ΥI,r(E)− ΥI,l(G) + ΥI,l(H) ∈ O(1) (2.13)
R = ΥI,n(E)− ΥI,n(D)− ΥI,n(H) + ΥI,n(A) ∈ O(1) . (2.14)

Therefore, U + L+ R ∈ O(1) + O(1) + O(1) = O(1). This calculation must be
done for the outer and the inner octagon, but this is still ∈ O(1).

2.5.2 FILTER RESPONSES AND DESCRIPTORS

To detect features in an image I, the previously described integral images are
computed for the gray scale variant Ig of I. DoOs are subsequently computed
not only for one but 7 different scales for each pixel. The exact dimensions of
the outer and inner octagons are given in Table 2.2 for each scale. The result is
a scale space S of dimensionality w × h× 7.



32 building blocks of the model

Table 2.2: Inner and outer sizes for the Difference of Octagons. (cf. [AKB08])
scale 1 2 3 4 5 6 7

inner (m,n) (3, 0) (3, 1) (3, 2) (5, 2) (5, 3) (5, 4) (5, 5)

outer (m,n) (5, 2) (5, 3) (7, 3) (9, 4) (9, 7) (13, 7) (15, 10)

Figure 2.15: MU-SURF generation from a feature position fi. To each of
the 16 subregions, Haar-Wavelets in the x and y direction are applied to form
subregion-description vectors vi. They are finally concatenated to create dfi

.

In the next step, each of the entries s ∈ S is checked if it conforms to certain
criteria:

1. s > 30

2. s must be a local extremum in a 3 × 3 × 3 neighborhood. This includes
filter responses of other scales.

3. s must have a Harris Cornerness ([HS88]) > 10.

When a value s fulfills all criteria, it is marked as a feature fi and a MU-
SURF descriptor dfi

is generated for fi. The descriptor dfi
is created by taking

a square region R of a certain scale-dependent size, which itself is split into 4×4
subregions. For each of those subregions R0, . . . , R15, Haar-Wavelet responses
dx and dy are computed for the directions x and y, respectively. To form the
final MU-SURF descriptor dfi

, all subregion description vectors, which are of
the form vi = (dx, dy, |dx|, |dy|), are concatenated to yield dfi

= (v0, . . . , v15) =
(dfi,0, . . . , dfi,63). The descriptors of all features of a frame are stored within
a descriptor table. This procedure is depicted in Figure 2.15. The difference
between the MU-SURF descriptor and the normal upright-SURF descriptor is
that each subregion Ri is extended slightly so it overlaps with its neighboring
subregions.
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Figure 2.16: Feature matching between two frames. Shown is the matching of
feature f3 to all features found in the previous frame. At first distances δl,k are
calculated. Next, the smallest two distances are compared to each other and if
the distances suite the required criteria, a match is stored to the correspondence
table. The value 0.65 was taken from the OpenCV implementation of SURF.
Blue and orange dots are exemplary feature positions, green lines between such
features are correspondence lines.

2.5.3 TRACKING

All features fi and their corresponding descriptors dfi
are stored in a descriptor

table for the frame they were found in. To track features in two frames at times
t and t+ 1, entries in both descriptor tables are compared one by one.
Let fi, i = 1, . . . ,m be the features of frame at time t+ 1 and gj , j = 1, . . . , n

the features of the frame at time t and dfi
and dgj their corresponding descriptors.

The distance δl,k between two features fl and gk is defined as the Euclidean
distance of the MU-SURF descriptor components

δl,k =

√√√√√q=63∑
q=0

(dfl,q − dgk,q)2 . (2.15)

Distances between all features fi and gj , i = 1, . . .m, j = 1, . . . , n are calculated
and the two smallest distances δr,s and δt,u taken for further comparison. If,
and only if those two distances are dissimilar enough, the two features with the
smallest distance are marked as a corresponding match, or a so called tracked
feature. To assist the mathematical description, Figure 2.16 contains an example
outline of the just mentioned approach.
The CenSurE feature matching and tracking yields a list of matches for each

pair of frames. The list contains features and their positions in each frame.
Features of two consecutive frames can subsequently be used to estimate the
ego-motion with the help of the epipolar geometry.
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yw

zw

xw
Pn = (xn, yn, zn)t

P2 = (x2, y2, z2)t

P1 = (x1, y1, z1)t

Figure 2.17: Overview of the epipolar geometry. The epipolar geometry de-
scribes the relationship of the camera coordinate systems which originate at Ol
and Or. Due to visibility reasons, the epipoles and epipolar plane were left out.

2.6 POSE ESTIMATION USING TRACKED
FEATURES

The ”intrinsic projective geometry” ([HZ00]) between two views of the same
environment is called epipolar geometry. It describes the transformations that
are required to turn projected points from one view into points of another view.
Figure 2.17 helps to understand this kind of relationship. Points P1, . . . , Pn in
3D space are projected perspectively onto the right and left image planes. With
the help of the fundamental matrix F, a 3× 3 matrix of rank 2, it is possible to
show a geometric relationship of point correspondences. The reverse way works
as well. It is possible to estimate F from given point correspondences. Having
assessed F, the translation and rotation to transform one view to another can
be extracted. To obtain the transformation, the essential matrix E, which is
computed from F with the help of the camera calibration matrix K, is required.
An extensive description of the epipolar geometry is given in [HZ00]. However,
I will present the essential steps to compute F and E and how to acquire the
rotation and translation from E.

2.6.1 ASSESSMENT OF THE FUNDAMENTAL MATRIX F

Longuet-Higgins described a method to establish the essential matrix E directly
from point correspondences in [LH87]. This method only works for calibrated
cameras, though. The fundamental matrix F on the other hand can be calcu-
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lated for uncalibrated cameras. In order to keep the model open for variations
in the camera model, F is estimated and subsequently E is calculated.
To compute F, an overdetermined system of equations has to be solved. The

method of choice is the adaptive RANSAC (Random Sample Consensus), an
extension to RANSAC presented in [HZ00]. The adaptive RANSAC is shown
in Algorithm 2. Before using RANSAC, all input coordinates need to be nor-
malized. The normalization will yield coordinates whose mean distance to the
centroid of all features is

√
2.

input : data d, model fitting function f , distance function δ, number of
required samples s, distance measure t

output : number of inliers nb, estimated model Mb

N ← 1;
p← 0.99;
i← 0;
m← number of elements in d;
maxIter ← 1000;
// Mb will contain the best model so far

Mb ← nil;
// nc will contain the number of inliers of Mb

nb ← 0;
while N > i do

σ ← select s random samples from d;
// the next line will create a candidate model Mc

Mc ← f(σ);
// The distance function will yield the number of inliers

nc ← δ(Mc, d, t);
if nc > nb then

nb ← nc;
Mb ←Mc;
// Calculate the quality of the new Mb

q ← 1−
(nb
m

)s;
N ← log(1−p)

log(q) ;
end
// prevent infinite loop

i← i+ 1;
if i > maxIter then exit loop;

end
return Mb, nb

Algorithm 2: The adaptive RANSAC algorithm.

RANSAC selects s = 8 feature correspondences from the set of all correspond-
ences d in each iteration. Note that F is of rank 2 and only seven correspond-
ences are thus required, but most implementations use eight. It thereupon calls
the fitting function f to fit a model to the selected data. The fitting function is
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Table 2.3: Parameters for the adaptive RANSAC algorithm. The algorithm
estimates the fundamental matrix F. s elements are required for this task.
The algorithm is either iterated for at most 1000 times or when the quality of
a candidate of F has a certain quality p. The measure to compute p is the
Sampson distance. A distance threshold t is required to compute this distance.
An outline of the algorithm is presented in Algorithm 2.

RANSAC Setup

minimum number of samples s 8
maximum iterations 1000

quality measure p 0.99
distance threshold t 0.00001

implemented using the singular value decomposition (SVD) approach, which is
described in [HZ00], to assess a candidate Mc for F.
The next step is to measure the quality ofMc. This is achieved by calculating

the Sampson distance between the (normalized) feature coordinates and the
coordinates which were projected with the help of Mc. Let y1,y2 ∈ R2 be two
point correspondences and Y1, Y2 ∈ R3 the correspondences with homogeneous
coordinates. The Sampson distance ∆S is defined as

∆S = Yt
1McY2

f1 · f1 + f2 · f2 , (2.16)

where f1 = Mcy1, f2 = Mcy2 and a · b is the dot product of a and b. The
Sampson distance is discussed in length in [HO06]. The distance threshold t is
set to t = 0.00001, features for which |∆S | < t holds are identified as inliers.
Remaining features are outliers. If the number of inliers is large enough, F is
identified as a Mc and RANSAC is stopped, otherwise it will continue with the
next iteration.
The fundamental matrix F which results from RANSAC needs to be re-

normalized because the input data was previously normalized. For a detailed
explanation of the normalization and renormalization step, I refer to [Har97].
The parameters which were used to produce the results of Chapter 3 are presen-
ted in Table 2.3.

2.6.2 EXTRACTION OF THE TRANSLATION AND
ROTATION

The essential matrix E is required to compute the translational and rotational
estimates. Given F and the camera calibration matrix K, E is defined as

E = KtFK . (2.17)
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K is a 3×4 matrix containing the intrinsic calibration for a camera. For example,
the calibration matrix for the default camera used in blender (until version 2.61)
is defined as

Kb =

−au 0 u0 0
0 −av v0 0
0 0 1 0

 , (2.18)

where au = f w2 , av = −f h2 . w is the image width, h is the image height. u0 = w
2

and v0 = h
2 locate the image plane’s principal point. f is the focal length, which

must be computed from blender’s internal sensor size of 32 mm and the ”lens
focal length” l, which can be set by the user. The default value of l is 35 mm.
Note that Kb already takes care of the fact that blender’s camera model is look-
ing along the negative z axis. In contrast to this, literature describing epipolar
geometry usually assumes the camera to look into the positive z direction. If
this difference is not taken into account , unexpected sign flips may occur.
Given E, it is possible to determine the translation and rotation. In [WT00],

Wang and Tsui show that the SVD of E yields eight different solutions. The
SVD approach was initially described in [Har92], but only four possible solutions
were identified. Ling, et. al., who use the decomposition of E for camera motion
tracking, support the findings of Wang and Tsui in [LCB11].

estimate selection

The SVD of E yields candidate solutions for the translation and rotation.
Decomposing E gives two different translation vectors t1, t2 ∈ R3, which are
equal except for their sign. In addition, the decomposition yields two different
rotation matrices R1,R2 ∈ R3×3. According to [WT00], R3 = −R1 and R4 =
−R2 are possible solutions as well. Consequently, a set of eight possible solutions
S = {(ti,Rj), i = 1,2, j = 1, . . . ,4} can be established. From the eight possible
solutions, only one (t,R) ∈ S is valid. It can be selected by calculating the 3D
point from a feature correspondence. Solely one of the solution candidates in S
will yield a 3D point that lies in front of both image planes.

Another method to determine the correct solution is a simple heuristic that
depends on the model constraints. The camera is moving along the camera’s
negative z axis, therefore the translational vector with a negative z component
is the correct one. The correct rotation matrix is selected according to the
following observation: Three of the four rotation matrices will contain rotations
around at least one of the axis by 90 degrees. Hence, it is possible to identify the
correct solution as the matrix containing the least overall rotation. The overall
rotation is the sum of all rotations around each axis. It can be computed, for
example, by converting a rotation matrix to Euler angles.
The implementation uses the constraint-dependent method to select the cor-

rect estimate. Ultimately, the selection is forwarded to the fusion module, where
it is combined with the result of the template model path.
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2.7 ESTIMATE FUSION AND THE HEAD
DIRECTION NETWORK

Rotational estimates from to individual paths need to be fused and the result
needs to be stored and must be retrievable. This shows that there is the need
for a subsystem which holds an estimate and is able to alter its state according
to new input. The following section contains a description of this subsystem
and will continue with the fusion mechanism, which merges the two estimates
from the template model and the epipolar path.

2.7.1 AN AMARI-TYPE HEAD DIRECTION NETWORK

Continuous Attractor Neural Networks (CANNs or CANs) are often used to
simulate hippocampal head direction, place or grid cells (e.g. [BF09], [Rol07])9.
They are networks of cells which are recurrently connected. Proper tuning of
the recurrent weights leads to the appearance of a so called activity packet.
The activity packet is a small area of the network which exposes neural activity
even when external stimuli are absent [BT07]. Such an activity packet can
be shifted by new stimuli, so that other areas of the network become active
while the old position becomes inactive ([FWW09], [ZY10]). Hence, CANs are
believed to play a major role in working memory. CANs were mathematically
analyzed primarily by Shun-Ichi Amari ([Ama90], [Ama91], [WHA08], [WA05]).
Schematics of a head direction network are given in Figures 1.1 and 2.18a.
In a nutshell, CANs achieve all requirements for the subsystem. They both

hold certain states over time without input and change their states as soon as
required. In fact, there exist different complex models of the head direction cell
network, e.g. [XHS02], which utilize CANs.

mathematical formulation of the head direction network

I defined a very simple head direction network which fulfills all requirements.
The equations are based on RatSLAM’s PoseCells and [BF09], a grid cell sim-
ulation for path integration which was shown to be very accurate for long dis-
tances. Each neuron is connected to nearby cells. Due to the fact that the
neurons code for a circular input space, the neuron which codes for zero degrees
has the neuron coding for 360 degrees as one of its direct neighbors.
Let wi,j be the weight from neuron j to i and θ a global inhibitory constant.

Let yj be the axonal potential of neuron j, the dendritic potential xi of neuron
i is hence defined as

dxi(t)
dt

= −xi(t) +
∑
j

wi,jyj(t)− θ . (2.19)

9 There is a strong argument in the research community, how hippocampal networks in
the rat and primate brain should be modeled. In addition to CANs, there are models
describing dynamics of single cells with the help of e.g. interference, spin-glass models,
etc. (for example see [ZYT+09], [FT06], [OB05], [MGG10]). They are not necessarily
used to simulate head direction networks, though.
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After the dendritic potential was calculated for a time t, all xi(t) < 0 are set to
zero. Afterward, the dendritic potentials are normalized according to

xi(t) = xi(t)∑
j xj(t)

. (2.20)

The axonal potential yj is defined as

yi(t) = tanh(xi(t)) . (2.21)

In all simulations, θ was set to 0.002. I found this value to stabilize the activity
packet in different simulations. Approximation of the differential equation was
accomplished by transferring the continuous-time Equation 2.19 to discrete time.
Let ρ = dt

τ , the discrete form of Equation 2.19 is thus defined as

xi(t+ 1) = (1− ρ)xi(t) + ρ

∑
j

wi,jyj(t)− θ

 , (2.22)

where t is the discrete time step. Consequently, yi(t + 1) must be computed
from xi(t+1). The results presented in Chapter 3 were calculated with dt = 1.0
and τ = 1.0.
Recurrent weights wi,j were defined using a Difference of Gaussian, yielding an

on-center off-surround function. This recurrent connection will excite neurons
which are near to an active neuron, but inhibit neurons which are further away.
The inhibitory part is required to have a stable activity packet. If there were
no inhibition of neurons in the far field, the activity packet would expand to
encompass the whole neuronal field. Let gσ be the Gaussian function, the weight
wi,j from neuron j to i is defined as

wi,j = gσ1(|i− j|)− gσ2(|i− j|) , (2.23)

with σ1 = 2.0, σ2 = 5.0.
Using Equations 2.20 to 2.23, the head direction network will expose a stable

activity pattern at a neuron i after only 10 iterations. For this to happen, neuron
i must be initialized to have a dendritic potential of one, while all other neurons
j 6= i must initially have a dendritic potential of zero.
To shift the activity packet, a center shifted variant of Equation 2.23 is used.

The shift depends on the amount the packet should be shifted and the number
of cells that are used in the head direction network. For example, the activity
of a network which uses 360 cells should be shifted. The shift has to reflect a
change of r = −5 degrees. The weights wsi,j , required to shift the activity packet,
are thus defined as

wsi,j = gσ1(|i− j|+ r)− gσ2(|i− j|+ r) . (2.24)

Note that r must be increased as soon as larger numbers of neurons are used to
simulate the network and vice versa. To apply wsi,j to the head direction network,
Equation 2.22 is calculated using wsi,j instead of wi,j . The implementation will
only work for a certain range of rotations. This is because the shifting function
is not wide enough to cover high angular values. To counteract this problem, a
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different shifting function needs to be defined. Due to the fact that large angular
motions were not analyzed with the model, the shifting function presented in
Equation 2.24 was used. The shifting procedure is illustrated in Figure 2.18b.
All simulations employed 360 head direction cells.

state interpolation

The same problem which was described in 2.4.1 for the template model, appears
in the head direction network. Instead of using the neuron that discharges max-
imally as head direction estimate, the neuronal field needs to be interpolated.
The interpolation follows Equation 2.5, where the set Ωnmax contains the max-
imally responding neuron nmax and 7 of its neighbors in each direction. The wn
of Equation 2.5 are the neural activities of the head direction cells in Ωnmax .

2.7.2 FUSING ESTIMATES IN TWO DIFFERENT WAYS

I investigated two different possibilities to fuse the rotational estimates from
the two processing paths. The first method merges the estimates according to
a weighted average, the second method combines two shifting functions.
To calculate the weighted average, it is necessary to define the weights. They

are confidence measures about how certain each processing path is about its
estimate. For example, the epipolar path will have a low confidence value for its
estimate when there were many features in the new image, but only few were
tracked in two frames. The template model path will have a high confidence
only in the case when the optical flow estimation yields a high confidence. The
instantaneous confidence measures are defined in the following way:

• The confidence of the epipolar path is defined as

ce = t

n
, (2.25)

where t is the number of tracked features between the two most recent
frames, n is the number of features found in the current frame.

• The MotionAlgo yields confidence measures for each flow vector of its
output. Therefore, the confidence of the template model path can be
defined as

ct =
∑w
x=1

∑h
y=1 cM (x, y)
wh

, (2.26)

where cM (x, y) is the confidence of the flow vector at position (x, y), w is
the width of MotionAlgo’s output and h its height.
If the MotionAlgo was not used to estimate optical flow, the confidence
measure ct is defined according to

ct = n− z
n

, (2.27)

where n is the number of all flow vectors and z is the number of flow
vectors vi with |vi| = 0. This is usually the case when a pixel has infinite
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(a) (b)

Figure 2.18: (a) Schematic of the head direction network. The circular head
direction network can be illustrated as a linear network. Only exemplary con-
nections of one neuron are shown in the Figure. (b) Activity packet shifting.
The activity packet of the head direction network is shifted by two degrees to
the right. The shifted packet is stable after one iteration of the network. Note
that only the responses of a small number of cells around the activity packet
are shown.
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depth and thus, optical flow could not be computed. This happens, for
example, in 3D models when the camera is looking at no structure but
into ”void”.

The instantaneous confidence measures of the last three frames are used to
calculate the gliding average confidence measures cge and cgt . Utilizing the con-
fidence measures cge and cgt , it is possible to define the two methods to merge
estimates:

• weighted average
Let re and rt be the rotational estimate of the epipolar and template model
path in degrees. re and rt are thus transformed to unit vectors according
to a function Φ:

Φ(r) =
(
sin(r)
cos(r)

)
. (2.28)

The fused result rf can thus be defined as

rf = Φ−1 (cgeΦ(re) + cgtΦ(rt)) . (2.29)

A corresponding function wf needs to be created according to Equation
2.24 to shift the activity packet of the head direction network. As soon as
wf is created, it needs to be applied to the network.

• shifting function
Instead of a vector addition, the shifting function method creates functions
we and wt according to the rotational estimates re and rt and Equation
2.24. Hence, wf can be defined by

wf = cgewe + cgtwt . (2.30)

This function can be applied directly to the head direction network without
any further calculation.

In summary of this section, the head direction network of the proposed model
is a network of recurrently connected cells which expose an activity packet. The
activity packet can either be shifted according to a precomputed function, or by
an additive application of two different functions.

2.8 FEEDBACK

Using the head direction (HD) network and a prediction signal, it is possible to
create a feedback for upstream modules. After a prediction signal was applied
to the HD network, the activity packet will be shifted. The change in the HD
network state can be expressed as an angular difference ∆ between the old state,
and the new state. With the help of the feedback ∆, it is possible to cancel out
the rotational component. This is based on the fact that optical flow does not
depend on the depth of the surrounding environment. Of course the approach
does not guarantee the complete separation of the rotational component of op-
tical flow. The remaining rotational component that is coded in the optical flow
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will be very small when ∆ is near the ground truth value, though, and can be
analyzed with high precision. Sampling rotational angles with a high precision
is described in Section 2.4.3.
The instantaneous optical flow is defined according to [LP80], with the differ-

ence that Longuet-Higgins and Prazdny used another camera setup. Whereas
their camera is looking along the positive z axis, mine is looking along the neg-
ative axis. The outcome is a sign flip in the initial formulation, which yields
two sign flips in the rotational component of optical flow.
Let X and Y be the coordinate of the optical flow on the retinal plane. Let

ωx, ωy and ωz be the rotations around the x, y and z axis, respectively. The
optical flow for rotations around x, y and z is thus defined as

u = 1
f

(
XY ωx − (f2 +X2)ωy + fXωz
(f2 + Y 2)ωx −XY ωy − fXωz

)
, (2.31)

where f is the focal length. Under the model constraints that the agent is only
allowed to carry out rotations around the y axis, the equation can be simplified
to

u = 1
f

(
(f2 +X2)ωy

XY ωy

)
. (2.32)

Let v be the optical flow vector at a position (X,Y ), determined either using
ground truth data or with the help of the MotionAlgo. Let u be the rotational
flow component according to Equation 2.32, ωy = ∆, at (X,Y ). Hence ν = v−u
is the optical flow that needs to be processed in the template model path.
Although feedback could have been incorporated to the epipolar path as well,

the focus was set on the template model path. Including feedback to the epipolar
path would enable the rejection of outliers in advance to estimating the funda-
mental matrix. The rejection would have to be based on the assumption that
the feedback signal is sufficiently precise. For each correspondence, which was
found with the help of CenSurE, a measure could be defined which determines
how well it reflects the rotational feedback. If the measure falls below a certain
threshold, the correspondence could be removed before having an influence on
the fundamental matrix estimation.
A feedback like the one described in this section was previously not described

in the literature – neither for one of the paths independently, nor in combination
with a fusion system. Thus, feedback was analyzed separately for the template
model and for the system which uses fused estimates.

2.9 ERROR METRICS

In order to quantify errors in estimations of translation and rotation, a list
of different error metrics were used. An estimation error occurs, for example,
when the agent rotates 5.0 degrees to the right, but the algorithm computing
the estimate yields a value of 4.5 degrees.
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2.9.1 REFERENCE SYSTEMS

Defining the reference systems is necessary before introducing the error metrics.
To compute the positional difference of two points, it is either possible to com-
pute the error with respect to a global reference point, or by taking one of the
two positions as reference. This is also true for rotations.
The two different reference systems are referred to by local or global reference

system, the errors are thus called local error or global error. Rotational, trans-
lational, and positional error metrics can be calculated using either the local or
the global reference system.

local errors

Local errors describe the instantaneous errors that occur between two estimates.
An agent which rotates between two frames by 5.0 degrees but estimates its
rotation at 4.5 will have an instantaneous error of 0.5 degrees.

global errors

To understand accumulative effects of estimation errors, it is necessary to com-
pute global errors. As an example, consider an agent moving on some path.
The agent has a constant local error, which causes an overestimation to the
right for the translational estimate by 0.05 m. Over time and although the local
error stays constant between different consecutive positions, the global error will
increase steadily.

2.9.2 ANGULAR ERRORS

Angular errors for rotation estimates were calculated according to the quanti-
fication of rotational bias described in [TTH96]. Let R be the ground truth
rotational matrix and R̄i be an estimated rotation matrix10. The ”difference
rotation” [TTH96] matrix is defined as ∆R = RtR̄i, where t is the transpose
operator. The angle θi, which takes R̄i to R, is defined as

θi = cos−1
(
tr(∆R)− 1

2

)
, (2.33)

where tr(B) is the trace of a matrix B.
To compute the average angular error R̃ of the set of estimation matrices

Q = {R̄1, . . . , R̄n}, ∆R̃ must be computed for R̃ instead of an R̄i. Note that
extracting Euler angles or quaternions from rotation matrices gives solutions
which are not necessarily unique. Therefore it is preferable to compute the av-
erage rotation matrix directly from all elements of Q. 3D Rotation matrices
are elements of Lie Group SO(3) [Sel96], on which the addition theorem is not
defined. To convert a matrix B ∈ SO(3) to a corresponding form b ∈ so(3),
the matrix logarithm can be used [Moa02]. so(3) is the three dimensional Lie
Algebra, on which the addition theorem for matrices is defined. The resulting

10 If a processing path yields only a rotational value around the y axis, a corresponding
rotation matrix needs to be computed first.
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matrix b is skew-symmetric and contains angular velocities, which can be aver-
aged element-wise. The inverse function of the matrix logarithm, which gives
B ∈ SO(3) for a b ∈ so(3), is the matrix exponential. The matrix logarithm and
matrix exponential will be henceforth denoted as M log and M exp. Constructing
the average rotation matrix R̃ for all R̄i ∈ Q is thus defined as

R̃ = M exp
(

1
n

n∑
i=1

M log
(
R̄i
))

. (2.34)

Using equation 2.33, the standard deviation σR̃ of the mean angular error R̃ is
defined as

σR̃ =

√√√√ 1
n− 1

n∑
i=1

θ2
i . (2.35)

2.9.3 TRANSLATION ERRORS

Errors for the translation estimation were calculated in form of the angular
difference between the ground truth translational vector (or directional vector)
and the estimated direction. This is due to two basic reasons: 1) the model con-
straints require the agent to travel at a constant speed and 2) the two processing
paths will produce estimates that need to be scaled. For example, the epipolar
geometry yields unit vectors for the directional vector due to a renormalization
step. Using the constrained speed the translation vector can be scaled to the
correct length.
Directional vectors are two-dimensional because the model is restricted to al-

low movement only in the xz plane. Let t = (tx, tz)t be the estimated translation
vector and ø = (τx, τz)t the ground truth vector. Hence, the error ξ between t
and ø is defined as

ξ = cos−1 (t · ø) , (2.36)

where a · b is the dot product of two vectors a and b. The calculation could as
well be written

ξ =
√(

tan−1 (tz, tx)− tan−1 (τz, τx)
)2 (2.37)

but then the cyclic space of the input data, which must lie in [−π, π], needs to
be enforced. Although most computer languages provide a function for tan−1,
usually named atan (or with quadrant checking atan2), the implementations and
accepted input spaces might differ. Thus, documentations for atan and atan2

need to be read carefully, and input data might need a transformation.

2.9.4 POSITION ERRORS

The error with respect to the agent position is called position error and is the
Euclidean distance between the ground truth and the estimated position. An
agent located at (4.5, 3.0) m with respect to a global reference point, believing
that it is at (4.6, 2.8) m, has a position error of approximately 0.22 m.
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Let p = (px, pz) be the position estimate and æ = (ρx, ρz) the ground truth
position. The error ζt between p and æ at time t is defined as

ζ =
√

(ρx − px)2 + (ρz − pz)2 . (2.38)

The mean position error κt at time t of an agent traveling on a path is

κt = 1
n

n∑
i=1

ζi , (2.39)

where n is the number of estimates collected until t.



3R E S U LT S

Each of the processing paths epipolar and template model were thoroughly ana-
lyzed separately to understand the estimation errors that are introduced. An
exhaustive examination of the results of the template model path was especially
needed, as it guided the selection of the different interpolation and subsampling
strategies. The distinct strategies are described in Sections 2.4.1 and 2.4.2. Next,
the two fusion techniques which I defined in Section 2.7.2 were studied. Finally,
the system that employs feedback was considered. For this system, results are
shown for the fused estimates together with the individual data of the template
model path.
Therefore, this chapter can be regarded as a step by step analysis of the

different building blocks of the model that I suggested in chapter 2. It leads to
the best parameter and function set for the submodules and their composition
to solve the problem of self-motion estimation from visual input.

setup parameters Parameters for the template model and the Motion-
Algo were fixed for each experiment, if not otherwise specified. Exact values for
these two submodules can be found in Tables 2.1 and A.1. Additionally, settings
for the adaptive RANSAC were kept constant for all trials. They are listed in
Table 2.3. Optical flow was stored and processed according to the Middleburry
flow format, which has (−1,−1) in the top left corner of the image plane and
(1, 1) in the bottom right corner as long as the image plane is quadratic. If the
ratio of width and height was not 1 : 1, the top left corner was set to (−1,−r)
and the lower right to (1, r), where r = h

w , h denotes the image height and w
the image width.

3.1 ESTIMATION ERRORS DUE TO NON-EXACT
FEATURE POSITIONS

Errors in the estimation of the spatial position of an agent can have diverse reas-
ons. For instance, the limited precision in numerical representation of numbers
can cause errors. This is usually imposed by the data type and programming
language that has been chosen for an implementation. Another source of errors
is the application of numerically critical arithmetic operations such as division

47
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Figure 3.1: Rotational and translational estimation errors for different feature
displacements. The input data consists of randomly scattered points in 3D space.
They were perspectively projected onto the image plane; exact positions were
rounded to pixel coordinates. Different displacements between features originate
from different depths in 3D space and different translational and rotational
values for the camera. Translation, rotation, and feature point positions in 3D
space were randomly selected for 250 trials.

by a small number. The errors that occur from the various sources can be
expressed by using the error metrics which I defined in Section 2.9.

In my implementation of the epipolar path, the inaccuracy of feature posi-
tions introduce the most errors. The CenSurE application, for example, yields
feature positions in the form of pixel coordinates of the input image. A higher
precision, e.g. sub-pixel accuracy, is not available for virtual data at the moment.
The error that is imposed by pixel coordinates was quantified in the following
way. Analytical feature positions were rounded to pixel coordinates in order
to simulate the output of CenSurE, the image plane width and height were set
to 480 × 360. The agent’s translation t and rotation ϕ between two frames

f = (fx, fy)

Pixel Rounding

fx, fy ∈ R

Pixel Space

2D-Space

p = (px, py)
px, py ∈ N

were selected according to the independent uniform distributions t = (t1, t2)t,
ti ∼ U(−10, 10) m and ϕ ∼ U(−10, 10)◦. Consequently, different feature dis-
placements are created this way. The displacement d of a feature f between two
frames at times t and t+ 1 is defined as the Euclidean distance of that feature
between the frames. Errors in the estimation of the rotation and translation were
subsequently calculated. Figure 3.1 shows the results for 250 trials. The errors
do not show a dependence on the displacement d, although a slight increase of
the error in the rotational estimate could be assumed for larger displacements.
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I collected another set of data to further investigate the rotational error. The
results were generated by an agent which travels on a circular path of radius
r = 7.5 m through a point cloud for 40 seconds (s). The point cloud is described
in Section 2.2.1. The agent traverses a distance of 1 m/s , data was collected for
the different frame rates {1, 2, . . . , 20}. This ends in smaller rotations and trans-
lations between two frames for higher frames. Analytical feature positions were
rounded to pixel coordinates again. The simulation was carried out 100 times.
Each time, the point cloud was randomly generated. The results are depicted
in Figure 3.2(a). The absolute angular errors stay approximately constant for
different frame rates. This supports the previous findings which were shown in
Figure 3.1.
A demonstration of the impact of the error in percent is drawn in Figure 3.3.

The Figure shows the ground truth trajectory as a gray curve, the estimated
trajectory of an agent using 1 FPS is drawn as a red curve while the estimated
trajectory of an agent using 10 FPS has a blue color. The agent using the
high frame rate displays a tendency to overestimate its rotation. This results
in an estimated trajectory that is narrower than the ground truth trajectory.
Note that Figure 3.3 needs to be interpreted carefully. Due to the higher frame
rate, the green trajectory is made of 401 data points, whereas the red trajectory
contains only 41 data points.

3.2 EVALUATION OF THE TEMPLATE MODEL

The template model has several spots which introduce errors. For example, the
choice of a subsampling strategy influences the result. Subsampling is required
to reduce the number of flow vectors which are used as input. I described
different subsampling strategies in Section 2.4.2. Although there are a variety
of descriptions and explanations of results of template models available in the
literature (e.g. [PS98]), detailed information about the influence of certain steps
during the computation is either not given at all or badly explained.
Parameters for all experiments are listed in Table 2.1. Data was collected

from an agent moving on a circular path with radius r = 7.5 m. The agent
traveled for 40 s with a speed of 1 m/s.

3.2.1 INTERPOLATION STRATEGY FOR ESTIMATE
SELECTION

The estimate of rotation is determined by the interpolation strategy. For in-
stance, instead of using the rotation for which the maximally responding neuron
codes, a certain area surrounding this neuron is integrated. The different meth-
ods which I considered are described in Section 2.4.1. The input data were
10 × 10 analytical optical flow vectors. Figure 3.4 shows the results for each
method and different frame rates. In addition, the estimate of the maximally
responding neuron is plotted. Quite interesting are the good results of the gauss
full method for a frame rate of 4 FPS. The method interpolates the template
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Figure 3.2: Detailed analysis of the rotational error. (a) Absolute error, intro-
duced by rounding feature positions to pixel coordinates. (b) Error in percent,
imposed by rounding exact feature positions to pixel coordinates. Both data-
sets were collected by using random point clouds as input data. Points were
perspectively projected onto the image plane and tracked between frames. The
datasets consist each of 100 simulations for each frame rate. The agent traveled
for 40 s with a speed of 1 m/s on a circular path with radius r = 7.5 m through
the point cloud.
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Figure 3.3: Estimated trajectories for two different frame rates and ground
truth trajectory.



52 results

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FPS

M
ea
n
A
ng

ul
ar

Er
ro
r
[d
eg
re
es
]

Mean Rotational Errors for a Clockwise Trajectory and Different Frame Rates

Max Response
Simple
Gauss Near
DoG
Gauss Full

Figure 3.4: Response field interpolation results. The mean values for different
frame rates are shown as boxes. The boxes are connected in order to improve
visibility.

model’s entire response field. Nevertheless, the estimate is worse than the results
of the other interpolation strategies for higher frame rates.
The results of methods simple and DoG are interesting for a frame rate of

5 FPS. Both methods yield a very small error for this frame rate. The error is
larger for most of the other frame rates which were considered. This is especially
true for theDoG interpolation method. Its error in the estimation of the rotation
is worse for all other frame rates.
Interpolation with the gauss near method is best for high frame rates. In

fact, Figure 3.4 shows that gauss near is the only interpolation strategy that
yields increasingly better results for higher frame rates. Due to the fact that
the targeted virtual scene provides 10 FPS, gauss near was employed as the
interpolation strategy for all simulations in the following sections.

3.2.2 INPUT SIZE

The number of optical flow vectors affects the estimation quality. Typically one
would assume that a higher number of vectors effects less error in the estimation.
Although Perrone showed in [Per92] that the template model achieves a higher
accuracy for estimates of the translation for a higher number of vectors, the sub-
ject is not studied well enough. Therefore I examined the rotational estimates
when using different numbers of input flow vectors. Input data was analytical
optical flow in a variety of input sizes. The results, which are illustrated in
Figure 3.5a, reveal that the estimation errors stay approximately constant for
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each input size. However, they contradict the assumption that a higher number
of flow vectors must always be beneficial. Especially outstanding are the results
for 30×30 and 40×40 flow vectors, as they yield the best estimates with respect
to the mean rotational error for a global reference system. This is despite the
fact that the number of vectors is quite small. Interesting in addition to these
findings are the results for an input size of 10 × 10. The good results for this
size were quite unexpected.
Figure 3.5b shows the mean angular errors and standard deviations for the

data shown in Figure 3.5a. The standard deviation declines with the use of more
flow vectors. 30× 30 flow vectors yield the best result with respect to the mean
angular error. The input sizes 30× 30 and 40× 40 are not significantly different
to each other according to Welch’s t-test with a significance threshold of 5%.
30 × 30 flow vectors will thus be used as the input for subsequent simulations.
The reduced number of flow vectors leads to a drastically smaller consumption
of both time and memory for the computation of the template model response.

3.2.3 SUBSAMPLING STRATEGY

Reducing the number of flow vectors is an important step. The previous section
pointed out that a larger number of flow vectors not necessarily leads to better
estimations. In addition, a large number of optical flow vectors may reach
computational limits. For instance, the ground truth optical flow of the virtual
sequence is of size 480×360. Matlab appallingly consumes memory and time to
compute the template model’s response. Hence, I proposed different methods
to subsample flow vectors in Section 2.4.2.
Note that the term subsampling is not fully correct. The process is an inter-

polation of flow vectors, but the term subsampling is used anyway to distinguish
this step from the interpolation of the response field.
Figure 3.6 shows the results for the different subsampling strategies. Out-

standing is that the mean subsampling strategy is always better than the me-
dian flow vector for all shown input sizes. Again, 30× 30 flow vectors resulted
in the estimate with the least mean errors. The best subsampling strategy is
almost always the mean vector without overlap. Due to the fact that the mean
vector of overlapping areas is best for 30×30 flow vectors this method was used
throughout the following simulations. In addition, the difference is insignificant
according to Figure 3.6, Note that 30×30 was the default size of flow vectors for
most simulations because it had the least mean angular error when compared
to other numbers of input sizes. This is shown in Section 3.2.2.

3.3 EVALUATION OF DIFFERENT FUSION
METHODS

Fusing the results of both processing paths is required to update the head dir-
ection network. The activity packet of the network needs to be shifted in such
a way to reflect the combined information of the two paths. Fusion can be ac-
complished in two different ways, described in Section 2.7. The first method is
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Figure 3.5: Analysis of the rotational errors. Displayed are errors of the rota-
tional estimates of the template model. The input was analytical flow of different
input sizes. (a) Rotational errors over time with respect to a global reference
frame. The displayed curves suggest that the under- or overestimation of the
rotation stays approximately constant over time, as the curves exhibit an almost
fixed slope. Magnitudal differences in the error lead to the different inclination
of the curves. The curves themselves are a result of the accumulation of errors
over time. (b) Mean angular errors and standard deviations.

.
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Figure 3.6: Mean rotational estimation with respect to a local reference frame
for different input sizes and subsampling strategies. Standard deviations were
left out to improve visibility. In addition, all mean values are connected by
dashed lines.

to calculate the averaged mean. The second method introduces a change of the
recurrent weights of the neurons in the network. The virtual sequence was used
to examine both procedures. Features were detected and tracked with the help
of CenSurE. The fusion was tested for both ground truth optical flow generated
with the help of exrflow and optical flow estimated with the MotionAlgo. As
a consequence of Sections 3.2.2 and 3.2.3, the flow was subsampled to a size of
30× 30.

The results indicate no significant difference of the methods. Figure 3.7 shows
the mean angular error and their standard deviations. The two methods are
named mean average and head direction throughout this section. In addition to
the fused results, the distinct estimates of the two processing paths are included.
Note that the epipolar path is independent from the optical flow that was used.
Therefore, the Figure is split into three logical groups: 1) contains only the
estimate of the epipolar path; 2) contains the results of the template model
path and the fused results for estimated optical flow; 3) contains the results for
ground truth optical flow.
Supplementary to this finding, there is virtually no difference discernible for

the two types of optical flow in Figure 3.7. Table 3.1 shows the exact numerical
values to broaden the insight into the Figure. The logical grouping of the Table
follows the Figure. Obviously, the template model path works slightly better
for ground truth flow data. In contrast to this, mean angular errors of fused
results for ground truth flow are worse than the errors for estimated optical flow.
Nevertheless, the differences are negligible.
As a consequence of the findings, the simulations of the next section will use

the head direction method. Estimated optical flow yields only marginally worse
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Figure 3.7: Mean angular errors for rotational estimates and their standard
deviation. Estimates from the epipolar path were independent from the optical
flow. Two different sets of optical flow were used to compute the results of the
template model. Both estimates were fused either according to an averaged
mean or by changing the head direction network’s recurrent weights.
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Table 3.1: Numerical values for the data displayed in Figure 3.7. The grouping
is the same as in the Figure. The first group contains solely the epipolar estimate.
It is independent from the used optical flow. The second group contains the
different results for estimated optical flow. The third group presents the data
for ground truth flow.
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Mean Angular Error [◦]
0.0008 0.0070 0.0003 0.0005 0.0048 0.0036 0.0028

Standard Deviation [◦]
0.1807 0.0360 0.0727 0.0767 0.0452 0.0775 0.0802

results for this method than ground truth optical flow. The implementation is
slightly less verbose for this method, though.

3.4 ESTIMATE IMPROVEMENT DUE TO
FEEDBACK

Feedback requires the template model to have a different sampling of rotational
angles. If there is no feedback, the model samples linearly in the range of
[−35, 35] degrees. By contrast, the sampling of rotational angles is dense around
zero degrees for the model that employs feedback. Linear and dense sampling
are described in Section 2.4.3. Consequently, the model analyzed in this section
uses dense sampling when feedback is applied.
The prediction signal is a random value drawn from the normal distribution.

The mean of the normal distribution is set to the ground truth rotation φ. In
order to analyze the systems reaction to different amounts of noise, the standard
deviation was set variably. Hence, the prediction signal p can be defined as

p = φ+ φ

ν
r , (3.1)

where r is a random value drawn from the standard normal distribution and
ν is the amount of noise in percent. Note that the model that does not incor-
porate feedback is not influenced by this noise in any way. The model which
uses feedback is called the feedback-model, the model that ignores feedback the
feedforward-model. If not otherwise specified, both models fuse the estimates
of the two processing paths.
The input to the models was optical flow estimated with the MotionAlgo.

This is due to the findings in Section 3.3. At first, results were analyzed for
30× 30 flow vectors. Then, the number of flow vectors was increased.
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Figure 3.8: Results of the fused model and the template model path without
fusion when using feedback. The results for the fused model without feedback
were almost identical to the results using feedback, so they are not shown here.
The first two error bars show the mean rotational errors and standard deviations
for the epipolar and template model paths for comparison reasons. As they do
not incorporate a feedback signal, they are not influenced by any feedback signal
noise.

In order to make comparisons more comprehensible, different results are
shown in all Figures. For instance, Figure 3.8 contains results for the feedback-
model together with results for the individual paths of the feedforward-model.
In addition, the results of the feedback-model for the individual template model
path is shown.
The model does not exhibit a bias towards noise. In fact, the results for

different amounts of noise are almost identical. For example, there are no sig-
nificant differences of the errors of the rotational estimates shown in Figure
3.8 according to Welch’s t-test with a significance level of 5 %. The Figure
shows slight tendencies, though. For instance, the mean angular error for the
feedback-model of the individual template model path is nearer to zero than
the feedforward-model. On the other hand, the standard deviation of the error
seems to be slightly increased. Note that the findings of Section 3.3 still hold
for the feedback-model.
Next, I increased the number of flow vectors that were used as input. The

number of 30 × 30 flow vectors is biologically not nearly plausible. Thus, it is
necessary to study the results for higher amounts of flow vectors. As a con-
sequence, the simulation was repeated for the different sizes of 30× 30, 40× 40,
. . . , 70× 70 and finally 96× 72 flow vectors. The last input size originates from
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Figure 3.9: Results of the models for different input sizes with and without
feedback. The first two bars in each group are the epipolar and the template
model estimate without any feedback. The template model path with feedback
is abbreviated as ”Template M.+Feedback” due to the lack of space. It is signi-
ficantly different from the template model path without feedback for ≥ 40× 40
input flow vectors.

MotionAlgo’s output size for model area MT. MotionAlgo subsamples the ori-
ginal resolution of the virtual sequence by a factor of five. Due to the fact that
the virtual sequence has a resolution of 480× 360 pixels, the corresponding MT
size is 96×72. Subsampling of flow vectors was turned off in the feedback model
when 96× 72 were used. It was enabled for all other sizes. For all simulations,
the noise level was set to 20%.
The feedback-model benefits from the feedback. This result is not statistically

significant, the data shows a tendency, though. Figure 3.9 illustrates the findings.
The Figure shows the data for the different input sizes. For each input size, the
rotational estimates of the individual processing paths, the feedforward-model,
the feedback-model and the feedback-model for the individual template model
path are shown. For 30 × 30 input flow vectors, the findings of Figure 3.8
are confirmed. The mean angular errors are close to zero. The next group of
Figure 3.9 shows the outcome for 40 × 40 flow vectors. Both individual paths
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without feedback show a slight increase of the mean angular error. The standard
deviations stay approximately the same when compared to the 30 × 30 results.
The decline in the estimation quality of the template model path increases with
the use of 50 × 50 flow vectors. Mean angular errors stay near to zero for the
other displayed estimation errors. In the groups for 60 × 60 and 70 × 70 flow
vectors, the error in the estimation of the template model keeps getting worse.
Note that the mean angular error for the feedback-model continues to stay near
to zero. In the last group of Figure 3.9, the estimates for 96×72 flow vectors are
illustrated. The template model estimate is the worst of all groups. Apart from
the difference between the individual template model path and the feedback-
model for this individual path, the most interesting finding is that the mean
angular error of the feedback-model is still approximately zero. Thus, there
is a tendency visible in the data. The feedback-model seems to benefit from
the feedback when larger numbers of flow vectors are used. This finding is not
supported by Welch’s t-test, though.
In contrast to these finding, a statistically significant difference exists between

the feedforward-model and the feedback-model of the individual template model
path. A significant difference according to Welch’s t-test with a significance
threshold of 5 % can already be shown for the comparison of the results for
30 × 30 and 40 × 40 flow vectors. 96 × 72 flow vectors show the strongest
implication. Figure 3.10 amplifies this finding. The mean errors over time of
the translational estimate are shown in Figure 3.10a. Below, the mean errors
over time of the estimation of the rotation are shown in Figure 3.10b. An
overwhelming improvement of the estimate of the agent’s spatial location and
rotation is shown for 96× 72 flow vectors. Hence, the feedback model helps to
improve the self-localization task.
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Figure 3.10: Mean errors over time of the feedforward and the feedback-model
for three different input sizes. The y axes are scaled to the same size to improve
the comparability. (a) Mean errors with respect to a local reference frame of
the position estimate. (b) Mean errors with respect to a global reference frame
of the rotational estimate.





4D I S C U S S I O N A N D C O N C L U S I O N

The results of Chapter 3 need further explanation. For example, the findings
for the different interpolation strategies of the template model response field
need clarification. There seems to be a coincidence of the results of some of the
methods. Hence, I will debate the findings and give reasons for their occurrence
in order to limit the scope of interpretation. In addition, I will discuss different
parts of the model with respect to their justification or comparison to other
models.

4.1 DISCUSSION

The estimation of the self-motion with the help of the epipolar geometry yields
approximately constant errors. Figures 3.1 and 3.2a do not show a dependence
of the error on the feature displacement. This is due to the fact that the error
which is introduced by rounding exact positions to pixel coordinates is limited
by the size of a pixel. Hence, the error is not arbitrarily large but confined to
the extents of one pixel. A direct consequence are the errors in percent.
Pixel coordinates impose estimation errors onto high frame rates. A high

frame rate will result in small amounts of rotation and translation between
frames. Precisely this problem is depicted in Figure 3.3. The agent which uses
a high frame rate acquires many data points, but the transformation from one
spatial position to the next is small when compared to the agent that uses a low
frame rate. Paying attention is thus needed when interpreting trajectory curves
with different numbers of data points per curve.

As already noted, the results of the interpolation methods need clarification.
I mentioned that the DoG and gauss full methods expose certain frame rates for
which they work best in Section 3.2.1. Additionally illustrated in Figure 3.4 is
the estimate of the maximally responding neuron. Comparing the results of the
single neuron to, for example, the gauss full method for a frame rate of 4 FPS
shows that their errors coincide. A possible reason is that the rotation between
two frames at 4 FPS is best represented by an interpolation of the complete
response field. Other rotations, which are reflected by other frame rates, do not
coincide with this. In addition to this, different rotational values may possibly
fit best to the parameters of the examined methods. For instance the DoG
method scores well for 5 FPS because the Difference of Gaussian reflects the
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available response field for this method. As the gauss near method does not
expose such a frame rate, I assumed that it is not susceptible to certain states
of the response field.
The performance of the mean subsampling method is interesting. The ef-

ficiency seems to contradict the findings in [SRB10]. The authors found the
median filtering to be the best operation available to remove noise and outliers
in optical flow. However, it did not turn out to be the best in my simulations.
The results of the simulations are depicted in Figure 3.6. The reason for the
good outcome of the mean method is due to the already smooth input data,
the median vector does not necessarily reflect the vectors in the cell that is
subsampled. The internals of the MotionAlgo already produce smoothed data,
there are almost no sharp edges of optical flow with the exception for outliers.
Hence, the best representation of a certain patch of the flow vectors is possibly
the mean vector. In addition, it can be assumed that the optical flow which is
generated with exrflow from the virtual scene forms a smooth manifold. Thus,
the same justification applies.
Although Perrone and Stone found that more flow vectors lead to a higher

accuracy, I found contradictory results. According to Figure 3.5b, even small
numbers of input flow vectors yield a mean rotational error that is near to zero.
On the other hand, I could affirm that the standard deviation of the errors
declines for larger numbers of flow vectors. Possibly, the template model either
over- or underestimates the rotation to the approximately same extent. This
would lead to the described large standard deviations, but would ultimately lead
to a small mean angular error. In addition, the agent could estimate its spatial
position correctly due to a neutralizing effect. For instance, two consecutive
estimates with the exact opposing over- and underestimations might lead to the
correct overall estimate.
The epipolar and template model path seem to under- and overestimate dia-

metrical to each other. The results of the simulation for the different fusion
methods suggest this notion. For example, the mean angular error for the fused
results is smaller than the mean angular error for the individual epipolar path.
The difference is vanishingly small, though.

Noisy prediction signals do not impose errors on the rotational estimates. In
fact, this is true for the feedforward-model as well as the feedback-model for
the individual template model path. I assume that dense sampling of rotational
angles around zero has the main effect. The amount of noise is not large enough
to let optical flow remain that contains high rotational values. Thus, the dense
sampling can precisely examine the remaining part. This conclusion is supported
by the fact that the mean angular errors for both feedback-models are smaller
than for the feedforward-models. Thus, the system is not vulnerable to noise in
the inspected quantities.
Although the data is not always statistically significant, a tendency that feed-

back is profitable can be spotted. Removing the rotational component of optical
flow due to feedback improves the estimate. This is especially the case for the
feedback-model for the template model path, the impressive consequence can be
regarded in Figure 3.10. The findings for the other models are influenced due to
the large standard deviations of the estimation errors. For example, the stand-
ard deviation of the epipolar path shown in Figure 3.9 is huge when compared
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to the other models. Thus, there is no statistically significant difference discern-
ible between this individual path and the other models with the exception of
the template model path. Consequently, no statistically affirmed statement can
be made. This is equally the case when comparing the feedback-model and the
feedforward-model. Nevertheless, an explicit improvement is visible in Figure
3.9.

There are some drawbacks of the feedback model, though. For instance, the
dense sampling most certainly leads to errors when the feedback signal fails.
Subsequently to the failing, optical flow cannot be relieved from most of the
rotational component. The template model might consequently systematically
over- or underestimate the rotation. Take for example optical flow which con-
tains a high rotational value when dense sampling around zero is given. The
value might fall exactly in between two sampling points that span a large range
of different rotational estimates. A precise rotational estimate will thus be im-
peded. Therefore it is necessary to find out the different possibilities for the
origin of the prediction and thus the signal. It may be possible that the reduc-
tion of optical flow is carried out in two subsequent steps in two different areas
of the brain. This idea is supported by the finding that stimuli in area VIP
(Ventral Intraparietal Area) are coded head-centric [ZHB04]. VIP is believed
to work similar to area MST, but neuronal responses are multimodal. A direct
path from MST to VIP would possibly circumvent the integration in a head
direction network, though.

The prediction signal might have different places where it is applied. My
implementation incorporates it after the head direction network was updated
according to the fused result. Thus, coincidence detectors to detect a change in
the head direction network could be used to make this step biologically plausible.
Such detectors are known to exist in the brain and can be easily implemented
with a sparse number of neurons. Other possible junctions for the prediction
signal are either directly at the optical flow estimation or during the fusion.
Both methods were considered for feasibility but not further analyzed.

A comparison of my model to the Kalman filter seems natural. In fact, both
the model and the Kalman filter employ a prediction-correction approach. One
of the differences is the creation of the prediction signal. Whereas the Kalman
filter creates its prediction from the estimated system model, the prediction that
is used in the proposed model may have various sources as just discussed. On
the other hand, different parts of the Kalman filter can be directly related to
components of my model. For example, the Kalman gain corresponds to the
different confidence measures used. My model has an advantage to the Kalman
filter, though. Lifelong service is one of the designated goals in robotics research.
Using a Kalman filter for pose estimation on a robot that is used on longer terms
imposes different problems. For example, to calculate the a posteriori state
estimate and error covariance matrix at a certain time, all observations that
were made up until this moment are required. Over long periods, an increase
in memory and processing power consumption is the consequence. In contrast
to this, my model uses an approximately fixed size of memory and processing
power.



66 discussion and conclusion

In summary, most of the results can be directly explained. However, some
of the findings will need further investigation. For instance, the results of the
different input sizes need to be analyzed on the basis of more simulations.

4.2 CONCLUSION

Estimating the self-motion from visual input with high accuracy is a difficult
task. In order to face the problem, I proposed a biologically inspired model. The
model uses feedback to process visual input in order to calculate estimations of
the rotation and translation. I was able to show that a feedback can help
to improve the precision of the estimate when optical flow is used as input. In
addition, I demonstrated that a simple network of head direction cells is capable
of fusing different sensory inputs. With the help of the head direction network,
a prediction signal can be used to calculate the feedback. Hence, the research
questions are answered. With the help of a head direction network, different
sensory inputs can be fused and subsequently used as a feedback in order to
improve the estimation quality.



5O U T L O O K

The model and its results directly lead to new research. For instance, some of the
presented results need to be re-investigated. The simulations should be repeated
with different trajectories. This might give more insight into the results for, e.g.
the different numbers of input vectors. On the other hand, the constraints that
were imposed on the model need to be successively removed.

Extending the model will require a lot of simulation time. Hence, it will be
necessary for efficiency to find acceleration structures which reduce the compu-
tational cost of the model and its modules. It might be necessary to rewrite
different parts, or to port them to massively parallel architectures like CUDA or
OpenCL. Doing so will most probably disclose new and exciting problems and
solutions in the domain of parallel computation of neural networks.
Aside from these technical enhancements, the model itself could be exten-

ded in many different ways. One such way would be to drive the model into
a direction where the combination of different processing paths is selected by
estimation quality. To illustrate this idea, assume a model that uses the same
processing paths as my model – epipolar and template model estimation – but
keeps track of the distance and rotation covered over time and adaptively incor-
porates estimates not until their assumed error falls below some certain quality
in percent. For instance, the findings in Section 3.1 suggest that the epipolar
path is only used after large translations or rotations because the ratio between
error and estimate will be beneficial towards the estimate. The path could thus
work as a sort of recalibration. In addition, the integration of distances could
be accomplished using more complex, biologically inspired neural field networks
that are currently used in research to simulate place cells and grid cells (e.g.
[BF09]). Other examples to enhance the model would be to use additional
paths to estimate self-motion (e.g. [TS96]) or to use different camera models.
Real world data should be considered to be tried with the model. It was shown

only recently in [MK11] that even small discrepancies between real footage and
a physically correct simulation of the same scene lead to significantly different
flow estimates. Hence, it should be examined if the model is robust against
those differences.
Furthermore, it is necessary to keep track of new findings in neuroscience.

They need to be incorporated into the biologically inspired model of visually
driven navigation. Thus, it may be possible to validate or falsify the findings.
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Supplementary, it might lead to proposals of new biological models and to new
research directions in neuroscience.



AA D D I T I O N A L S E T U P
PA R A M E T E R S

Table A.1: Setup parameters for the MotionAlgo application.

MotionAlgo Setup

image width determined by reading input files
image height determined by reading input files

detection algorithm CENSUS
number of scales 1

generate confidence values true
use saliency map true
past steps used 1

future steps used 0
maximum number of hypotheses V1 5
maximum number of hypotheses MT 5

subsampling factor V 1→MT 5
maximum detected speed 120 [pixels]
feedback enhancement C 100

saliency preblur factor 1
Hanning blur size ∆s 3
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BV I R T U A L S E Q U E N C E

The virtual sequence was modeled using blender. Figure B.1 gives a floor plan
of the scene. The agent is traveling on the orange path in clockwise direction.
The .blend file is published under a Creative Commons license and available on
http://rochus.net.

Figure B.1: Virtual sequence. The sequence contains different objects. Each
object is textured in a way to yield approximately the same number of tracked
features as real world footage of the Ulm University.

71

http://rochus.net




CS O F T WA R E

In addition to the proposed model, I wrote some utilities and extensions to
already available software products. The goal was to have self-contained tools
which can be used not only for the biologically inspired model of visually driven
navigation, but for other projects and research as well. While writing the soft-
ware, I payed attention to be standards compliant to the language which was
used in each case. This is especially the case for the CenSurE implementation
and the exrtools collection which were written in C and C++, respectively.
This chapter contains only a short overview of the software. Licensing details,

man pages and technical documentation for each software ships with the source
code.

c.1 CENSURE , LIBCENSURE

At the time of this writing, the implementation of the feature detection and
tracking based on CenSurE is available as a command line application of name
censure. The core of the application, which is written in ANSI C99 will be stripped
of the surrounding parts, which are written in C++ due to the need to process
OpenEXR files, and published as libcensure. Hence it will be possible to link
against it and use it, for example, from within Matlab. Newest versions and
updates to the censure standalone application as well as libcensure will be
available on http://git.rochus.net.

c.2 EXRTOOLS

The exrtools are a collection of tools to process OpenEXR files. They will be
available on http://git.rochus.net shortly after this writing.

• exr2pgm converts OpenEXR files to PGM.

• exrcvview uses OpenCV to display a sequence of OpenEXR files as video.

• exrflow is the main contribution of the exrtools collection. exrflow takes
a CSV file, a focal length and OpenEXR files as input. The CSV file needs
to contain the camera matrix for each frame that is passed as OpenEXR
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file. Subsequently, exrflow calculates ground truth optical flow for the
movement between every consecutive OpenEXR files according to [LP80].
The implementation with respect to the CSV file may change in future
releases, as it is possible to store meta-data such as matrices directly to
OpenEXR files.

c.3 MATEXR

The matexr files contain two extension to Matlab in Matlab’s mex format. The
first extension reads OpenEXR files, converts them to gray scale and passes
them to the calling Matlab function. The second extension transforms from
OpenEXR’s linear RGB to sRGB instead of the gray scale conversion.

c.4 CAMLOCPOS

In order to export the camera matrix with respect to the world coordinate
system from blender, I had to write a small extension called camlocpos. The
blender extension integrates directly with blender in order to make it easy to use.
camlocpos provides settings in the Render panel of blender’s main UI. camlocpos
is already available on http://git.rochus.net.

http://git.rochus.net
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