
Journal of Neural Engineering

PAPER

Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces
To cite this article: Zied Tayeb et al 2018 J. Neural Eng. 15 065003

View the article online for updates and enhancements.

This content was downloaded from IP address 129.187.254.46 on 02/11/2018 at 08:15

https://doi.org/10.1088/1741-2552/aae186
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/606092267/Middle/IOPP/IOPs-Mid-JNE-pdf/IOPs-Mid-JNE-pdf.jpg/1?

1 © 2018 IOP Publishing Ltd Printed in the UK

1. Introduction

Paralyzed people wish to control assistive devices such as
wheelchairs, spellers, prosthetics, or exoskeletons in order to
improve their quality of life and ensure their independence [1].
One way to infer their desired actions is to measure their cor-
tical activity, for instance by functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), electro-
corticography (ECoG), or electroencephalography (EEG) and

subsequently decode the intended movement from the mea-
surements. Of these methods, EEG has become the most fre-
quently used technique for BCIs, because it is non-invasive
and comparably inexpensive. Although BCI technology has
seen significant improvements over the last few years [2, 3], it
still lacks reliability and accuracy. Hybrid BCIs in general [4],
and particularly those which combine EEG and EMG signals
are promising significant improvements [5]. Despite the suc-
cessful multidimensional EEG-based BCI control achieved

Journal of Neural Engineering

Gumpy: a Python toolbox suitable for hybrid
brain–computer interfaces

Zied Tayeb1,2 , Nicolai Waniek1, Juri Fedjaev1, Nejla Ghaboosi3,
Leonard Rychly1, Christian Widderich1, Christoph Richter1, Jonas Braun1,
Matteo Saveriano4, Gordon Cheng2 and Jörg Conradt1

1 Department of Electrical and Computer Engineering, Neuroscientific System Theory, Technical
University of Munich, Munich, Germany
2 Institute for Cognitive Systems, Technical University of Munich, Munich, Germany
3 Integrated Research, Sydney, Australia
4 Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Munich, Germany

E-mail: zied.tayeb@tum.de

Received 24 February 2018, revised 15 August 2018
Accepted for publication 14 September 2018
Published 10 October 2018

Abstract
Objective. The objective of this work is to present gumpy, a new free and open source Python
toolbox designed for hybrid brain–computer interface (BCI). Approach. Gumpy provides
state-of-the-art algorithms and includes a rich selection of signal processing methods that
have been employed by the BCI community over the last 20 years. In addition, a wide range
of classification methods that span from classical machine learning algorithms to deep
neural network models are provided. Gumpy can be used for both EEG and EMG biosignal
analysis, visualization, real-time streaming and decoding. Results. The usage of the toolbox
was demonstrated through two different offline example studies, namely movement prediction
from EEG motor imagery, and the decoding of natural grasp movements with the applied
finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-
time control of a robot arm using steady-state visually evoked potentials (SSVEP) as well as
for real-time prosthetic hand control using sEMG. Overall, obtained results with the gumpy
toolbox are comparable or better than previously reported results on the same datasets.
Significance. Gumpy is a free and open source software, which allows end-users to perform
online hybrid BCIs and provides different techniques for processing and decoding of EEG
and EMG signals. More importantly, the achieved results reveal that gumpy’s deep learning
toolbox can match or outperform the state-of-the-art in terms of accuracy. This can therefore
enable BCI researchers to develop more robust decoding algorithms using novel techniques
and hence chart a route ahead for new BCI improvements.

Keywords: hybrid brain–computer interfaces, Python, deep learning, EEG, EMG

(Some figures may appear in colour only in the online journal)

Z Tayeb et al

Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces

Printed in the UK

065003

JNEIEZ

© 2018 IOP Publishing Ltd

15

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aae186

Paper

6

Journal of Neural Engineering

IOP

2018

1741-2552/18/065003+14$33.00

https://doi.org/10.1088/1741-2552/aae186J. Neural Eng. 15 (2018) 065003 (14pp)

https://orcid.org/0000-0003-3257-0211
https://orcid.org/0000-0003-0770-8717
mailto:zied.tayeb@tum.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aae186&domain=pdf&date_stamp=2018-10-10
publisher-id
doi
https://doi.org/10.1088/1741-2552/aae186

Z Tayeb et al

2

using simple classifiers [3, 6], reliable decoding of complex
movements from brain signals is still challenging and requires
advanced algorithms [7]. Recent developed techniques such
as deep neural networks [8] could represent a promising solu-
tion to develop more robust decoding algorithms [7]. In order
to make such algorithms readily available to a wide BCI com-
munity we developed gumpy, a Python library along with
well documented application examples that we introduce in
this paper. Gumpy is an easy-to-use, robust, and powerful
software package for EEG and EMG signal analysis and
decoding that tightly incorporates different recording para-
digms, essential signal processing techniques, and state-of-
the-art machine learning algorithms. Gumpy can be used
for offline as well as for online processing of electrophysi-
ological signals. Several similar BCI software packages exist
and are widely used by the community [9]. Gumpy is free of
charge, permissively licensed and written in Python, an open
source programming language that is not only backed by an
extensive standard library, but also by vast scientific com-
puting libraries. Moreover, it is widely used by many machine
learning experts, engineers and neuroscientists. Gumpy offers
users the opportunity to reproduce results previously achieved
by other BCI researchers through implementing a wide range
of signal processing and classification methods for time series
signal analysis. Furthermore, the toolbox features several deep
learning models such as deep convolutional neural networks
(CNN) [10], recurrent convolutional neural networks (RCNN)
and long short-term memory (LSTM) [11]. Those approaches
have hitherto been rarely investigated by BCI researchers [12]
and to the best of our knowledge no existing BCI software
integrates similar techniques. This paper introduces the basic
concept of gumpy, its main features and three successful BCI
applications. The remainder of this paper is structured as fol-
lows: section 2 provides an overview of related work and
reviews existing BCI toolboxes. Section 3 describes gumpy’s
design and its main features and functions. Sections 4 and 5
demonstrate, respectively, the basic offline and online usage of
gumpy on different tasks, such as motor imagery (MI) move-
ments decoding from EEG, and the prediction of hand gestures
from sEMG. Finally, section 6 enumerates gumpy’s strengths
and weaknesses and proposes possible future developments.

2. Related work

This section provides an overview of the most widely-used
open source BCI platforms for research and highlights the
distinctive features of gumpy with respect to them. Table 1
summarizes their main functions and limitations. References
[9, 13] provide a more comprehensive survey. The discussion
focuses on a particular feature set that we deem essential for
the successful development of future hybrid BCI systems.

2.1. BCILAB

BCILAB [14] is among the earliest publicly available BCI
software packages for research purposes. It is a free, open
source toolbox developed in Matlab. BCILAB is built to

emulate the plugin concept where various components can be
added ‘on the fly’ during the runtime. BCILAB was designed
as an extension of EEGLAB [15] to support both offline and
online analysis of electrophysiological signals. Besides var-
ious feature extraction methods and experimental paradigms
supported by the toolbox, an end-user can choose between
three different classifiers (linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA) and support vector
machine (SVM)). In addition, BCILAB obliges users to
design their scripts in Matlab [14].

2.2. BCI2000

BCI2000 [16] is an open source and free of charge BCI soft-
ware package developed in 2000 to advance real-time BCI
systems. It includes different modules such as data acquisi-
tion, signal processing and stimulus presentation. The toolbox
is written in C + + and does not directly support other pro-
gramming languages such as Matlab or Python, so in this
regard it is difficult to extend and integrate with other tool-
boxes. Furthermore, some important processing methods such
as discrete wavelet transform and some classification tech-
niques such as deep learning are not included [16].

2.3. MNE

MNE is an open source Python package for MEG/EEG data
analysis. MNE implements a wide range of functions for
time-frequency analysis and connectivity estimation as well
as simple decoding algorithms [17]. Similar to gumpy, it is
built on top of widely used scientific computing libraries such
as NumPy [18], SciPy [19], pandas and scikit-learn [20].
Moreover, MNE offers functions for neuroimaging data inter-
pretation such as fMRI analysis. Despite recent developments,
the toolbox still lacks some important functions and methods,
such as common spatial pattern algorithm (CSP) [21] and var-
ious popular machine learning classifiers.

2.4. Wyrm

Wyrm [22] is an open source BCI package written in Python.
The toolbox implements several functions for processing
and visualization of electrophysiological data such as EEG
and ECoG signals. Moreover, Wyrm is suitable for both
offline processing and real-time applications. Furthermore,
the toolbox integrates Mushu [23] a free software for signals
acquisition, and Pyff [24], which is a framework for BCI feed-
back applications.

2.5. OpenViBE

OpenViBE [25], another open source BCI platform, is
designed in a modular fashion and incorporates an elegant
graphical user interface for novice users. Moreover, it pro-
vides a wide range of signal processing techniques and sup-
ports many acquisition and BCI paradigms such as P300 [26,
27] and SSVEP [28]. One of OpenViBE’s advantages with

J. Neural Eng. 15 (2018) 065003

Z Tayeb et al

3

respect to the previously mentioned toolboxes is that it can be
scripted using both LUA and Python. In addition, it offers a
direct interface to Matlab. OpenViBE currently provides three
classifiers: LDA, SVM as well as a combined classifier for a
multi-class problem classification.

2.6. Distinctive features of gumpy

Despite the tremendous number of features that current BCI
toolboxes offer, they still exhibit some limitations [13] such as
a lack of important processing and classification methods, lim-
ited real-time performance, or lack of experimental paradigms
to conduct online BCI experiments. More importantly, none
of the existing packages combine classic machine learning
algorithms and deep learning techniques for signals decoding.
However, gumpy covers a wide range of classification methods
including several machine learning classifiers, voting classi-
fiers, feature selection algorithms and different deep learning
architectures such as LSTM, CNN and RCNN. Additionally,
we provide many showcase examples of the usage of gumpy
for EEG and EMG signals decoding, thereby facilitating the
design of hybrid BCI systems. Furthermore, gumpy integrates
different experimental paradigms for motor imagery, EMG,
SSVEP, EEG reach-to-grasp movements recording and hybrid
BCI, which can be easily used and extended by end-users.
Importantly, gumpy supports offline analysis as well as online
BCI applications. With the lab streaming layer (LSL) [29] for
data acquisition, the provided experimental paradigms for
biosignals recording and gumpy package for EEG and EMG
data processing and decoding, we envision gumpy to be a suit-
able toolkit for conducting online hybrid BCI experiments.

3. Gumpy toolbox: design, main functions
and features

3.1. General overview of gumpy’s modules

Gumpy comprises six modules for plotting, processing, and
classification of EEG and EMG signals. Moreover, gumpy
incorporates different deep learning models and experimental
recording paradigms. This section provides a condensed over-
view of gumpy’s modules and its main functionality, which are
summarized in figure 1. Some of the modules are described in
more detail in the following section on exemplary use-cases.
Particularly, section 3.3 covers the available deep learning

classifiers. Where possible, gumpy leverages existing and well
established scientific and numerical libraries such as NumPy
[18], SciPy [19] and scikit-learn [20] to compute the clas-
sification results or to perform signal analysis. For instance,
gumpy’s SVM classifier utilizes scikit-learn. However, gumpy
preconfigures its classifiers with default parameters that were
found to be suitable in typical BCI applications. In addition,
gumpy can perform a grid search to tune their settings. One
of gumpy’s core design principles is to allow users to easily
extend its functionality, thereby facilitating usability, custom-
izability and collaborative development. The latter is further
enabled using our public git repository at https://github.com/
gumpy-bci through which we solicit the community to con-
tribute feedback and code. In addition, the website http://
gumpy.org/ provides an API reference and usage examples in
the form of Jupyter notebooks.

3.2. Gumpy’s experimental paradigms

3.2.1. Classic motor imagery movements. Gumpy provides a
cue-based screening paradigm to record classic motor imag-
ery; namely the imagination of the movement of left hand,
right hand or both hands as shown in figure 2. At predefined
times, the screen displays a cue in the form of an arrow point-
ing either left, right or both ways. The participant has to per-
form a hand movement imagination accordingly.

3.2.2. Reach-to-grasp motor imagery movements. Gumpy
incorporates a paradigm to record EEG reach-to-grasp move-
ments imagination of six different objects placed on a shelf
with fixed positions as shown in figure 3. The subject is asked
to imagine a reach movement by bringing the cursor (square)
toward one of the six center-out target locations (up-left, up-
right, center-left, center-right, down-left, down-right). Once
the square hits the target, it turns red which triggers the par-
ticipant to now imagine performing a grasping movement on
that specific target.

3.2.3. Grasp poses and related finger forces from surface
EMG signals. A special experimental paradigm was designed
to record sEMG signals from the forearm during four different
hand movements (2-digit grasp, 3-digit grasp, fist, hand open)
as shown in figure 4 with two possible force levels (high, low).
Strain gauge sensors placed on the fingertips measured the
applied grasping force [30] .

Table 1. General overview of existing BCI toolboxes.

Software platform Programming language Features

BCILAB Matlab Wide range of algorithms well-designed GUI
BCI2000 C + + Simple and robust wide usage by BCI community

modular programming
MNE Python EEG, MEG and fMRI data analysis good documentation
Wyrm Python EEG and ECoG signals real-time capabilities integration

with other platforms
OpenViBE LUA, Python Modular API supports many acquisition devices
Gumpy Python Hybrid BCI real-time capabilities offline and online

analyses deep learning toolbox

J. Neural Eng. 15 (2018) 065003

https://github.com/gumpy-bci
https://github.com/gumpy-bci
http://gumpy.org/
http://gumpy.org/

Z Tayeb et al

4

3.2.4. Gumpy-SSVEP paradigm. The SSVEP paradigm con-
sists of four flickering checkerboards blinking at different fre-
quencies (13, 15, 17 and 19 Hz), as shown in figure 5. The
subject has to focus on one of the flickering checkerboards
in order to evoke an SSVEP response. Simultaneously, EEG
signals recording from O1, OZ and O2 electrodes were per-
formed. The paradigm was implemented using PyGame [31],
a gaming-oriented Python library for graphical user interfaces.
It requires a monitor supporting sufficiently high (or dynamic)
refresh rates.

3.2.5. Gumpy’s experimental paradigm for real-time hybrid
BCI. The hybrid BCI paradigm allows end users to perform
online hybrid BCI experiments. For instance, this paradigm

was used to perform a sequential hybrid BCI task, where the
subject was asked to imagine left or right hand movement
imagination and execute thereafter the same imagined move-
ment. For that, a simultaneous recording of EEG and sEMG
signals was performed using two synchronized g.USBamp
devices. Signals were sampled at 512 Hz and the LSL was
used for data acquisition in a master-slave communication
fashion. It should be noted that the developed paradigm could
be used to simultaneously collect data from other devices (e.g.
Myo armband [32] and the g.USBamp) and could be easily
modified to acquire other types of biosignals. A detailed docu-
mentation of the hybrid paradigm as well as the developed
code are made publicly available within gumpy under https://
github.com/gumpy-bci

Figure 1. Overview of gumpy toolbox modules and functions.

Figure 2. Illustration of recording paradigm for three motor imagery EEG data acquisition. (a) Photograph of a recording session.
(b) Outline of the designed recording paradigm.

J. Neural Eng. 15 (2018) 065003

https://github.com/gumpy-bci
https://github.com/gumpy-bci

Z Tayeb et al

5

3.3. Gumpy’s deep learning module

Despite the numerous successful applications of deep neural
networks [10], the development of deep learning methods in
the BCI field is still quite rare [12]. In this section, we describe

gumpy’s deep learning module, which is based on Theano [33]
and Keras [34], as well as different implemented and available
network architectures.

3.3.1. Recurrent neural networks (RNN). Recurrent neural
networks and particularly long short-term memory (LSTM)
have been used successfully to model the temporal charac-
teristics of diverse non-stationary and non-linear time-series
signals. Likewise, such methods should be applicable to EEG
data as well [35]. Gumpy makes LSTMs and other recurrent
architectures like vanilla RNN and recurrent convolutional
neural networks (RCNN) readily available and provides well-
documented example code. The architecture of the LSTM
algorithm distributed with the initial gumpy release is shown
in figure 6. It consists of one LSTM layer consisting of 128
cells and an input layer where E represents the electrode chan-
nels, T represents the number of samples in every channel and
K the number of output classes.

Figure 3. Illustration of recording paradigm for reach-to-grasp movements. (a) Display requests subject to imaginatively reach for the mid-
left cup in the shelf. (b) Subject is requested to imagine grasping the center-right cup.

Figure 4. EMG recording paradigm. (a) Different hand gesture renderings prompting subjects. (b) Recording setup of EMG signals during
grasp movements.

Figure 5. Illustration of the recording paradigm for SSVEP.

J. Neural Eng. 15 (2018) 065003

Z Tayeb et al

6

3.3.2. Convolutional neural network (CNN). The proposed
CNN model architecture is illustrated in figure 7. The net-
work architecture is inspired by CNNs used in the ImageNet
competition, such as VGGNet [36] and AlexNet [37]. It uses
stacked convolutional layers with decreasing size and increas-
ing number of filter kernels in deeper layers. After each con-
volutional layer, batch normalization is applied to reduce
covariate shift in intermediate representations and improve
robustness. The actual spectrogram representation of the EEG
signal is computed in the first layer and used as an input to the
model. A more detailed description of the CNN architecture
and its implementation will be provided elsewhere.

4. Offline analysis case studies

In this section, we show how to use gumpy to perform offline
analysis of EEG/EMG data. As a result, researchers can easily
reproduce the obtained results using our provided Jupyter
notebooks, our freely available EEG/EMG recorded data or
the EEG dataset 2b from BCI competition IV [38] as well as
gumpy’s available experimental paradigms.

4.1. Decoding of two motor imagery movements from Graz
2b EEG signals

We used gumpy’s signal and classification developed modules
to process and classify an existing EEG dataset known as 2b
EEG dataset from ‘BCI Competition IV’ [39]. The source
code (Jupyter notebooks) utilized in these offline examples
are freely available under http://gumpy.org/

4.1.1. Standard machine learning techniques. Three feature
extraction methods, i.e. logarithmic band power (BP) [40],
common spatial patterns (CSP) [41, 42] and discrete wave-
let transform [43], have been investigated and tested. In gen-
eral, CSP features maximize the pairwise compound variance
between two or more classes in the least square sense, whereas
wavelet features provide an effective time-frequency represen-
tation of non-stationary signals [43]. We wish to emphasize
that those feature extraction methods have been advocated by

BCI researchers in [7]. After extracting discriminative features,
www.gumpy.features.sequential_feature_selector was used to
automatically select a subset of features in the feature space
using the sequential feature selection algorithm (SFSF) [44].
The www.gumpy.split module provides several methods for
splitting data. Herein, we used the hold-out strategy by split-
ting the dataset into 80% for training and 20% for test using
the www.gumpy.split module. A ten-fold cross validation was
performed on the training set to select the best features using
six different classifiers from the www.gumpy.classification
module. Afterwards, the new generated subsets based on the
selected features were fed into each classifier and new predic-
tions were made on the testing dataset. Furthermore, we wish
to mention that the classification module incorporates a voting
classifier, which employs an ensemble of classifiers to ‘vote’
using their respective results. Finally, it should be noted that
www.gumpy.classification can also perform a grid search to
select the best hyper parameters for SVM and random forest
classifiers for a given k-fold cross validation. Noticeably, BP
slightly outperforms the other two feature extraction methods
and provides overall better results across the different nine
subjects. The obtained classification results with the BP fea-
ture extraction method with six different algorithms including
the voting classifier are shown below in figure 8. Overall, the
obtained results from individual subjects show inter- and intra-
subject variability. According to their performance, the nine
participants could be classified into three categories: Bad par-
ticipants are S1, S2, S3 and S7 with a classification accuracy
between 60% to 70%, good participants are S5, S6, S8 and S9
with a classification accuracy between 70% to 82%, and an
excellent participant S4 with an average classification accuracy
of 93.75%. It is worth noting that a comparable performance
was obtained with the CSP features. A Jupyter notebook show-
ing how to use the three different feature extraction methods
with the different available classifiers, is made publicly avail-
able under https://github.com/gumpy-bci

4.1.2. Deep learning techniques. Two deep neural network
algorithms for motor imagery classification using the www.
gumpy.deep_learning module were investigated and tested:
convolutional and recurrent neural networks. Firstly, an
LSTM model with only one hidden layer consisting of 128
LSTM memory cells was tested. To assess the model’s capa-
bility of autonomously learning discriminative features, only
raw EEG signals were fed into the algorithm. The large num-
ber of parameters of the LSTM model makes the model prone
to overfitting. A dropout layer with a deactivation rate of 0.05
between the output and the LSTM layer partially mitigates
this problem. Second, a CNN algorithm was implemented and
tested. Recorded EEG signals were first cropped into short,
overlapping time-windows. Thereafter, a fast Fourier trans-
form (FFT) was performed on each crop, assuming stationar-
ity in short time-frames. Spectrograms from three electrodes
C3, C4 and Cz in the frequency band of 25–40 Hz were com-
puted and used as inputs to our proposed CNN algorithm.
Parameters were set to n = 1024 FFT samples and a time
shift of s = 16 time steps between STFT windows. For each
of the nine participants, a stratified five-fold cross-validation

Figure 6. Implemented LSTM architecture.

J. Neural Eng. 15 (2018) 065003

http://gumpy.org/
http://www.gumpy.features.sequential_feature_selector
http://www.gumpy.split
http://www.gumpy.split
http://www.gumpy.classification
http://www.gumpy.classification
https://github.com/gumpy-bci
http://www.gumpy.deep_learning
http://www.gumpy.deep_learning

Z Tayeb et al

7

was applied. Four folds were used for training and validation
(90% training, 10% validation) and the last fold was used for
testing. Finally, we point out that early stopping [45] was used
to avoid overfitting. That means the model is trained until the
minimum of the validation loss is found and then tested on
the test data to measure its generalization capabilities. Inter-
estingly, the obtained results with the CNN model outper-
formed the state of the art results on the same dataset, which
were obtained with classic methods. However, LSTM results
were similar to those obtained with traditional methods (e.g.
quadratic LDA) as shown in figure 9. An intuitive reason of
that could be the limited amount of training data. As a result,
reducing model complexity by decreasing the number of cell
memories would be a promising solution to improve the devel-
oped algorithm. After validating the offline results, we wish to
mention that the testing phase was done online and a success-
ful real-time control of a robot arm was performed using the
trained proposed CNN model as shown in the supplementary
video in the supplementary materials section.

4.2. Decoding of natural grasps from surface EMG signals

Making a prosthetic hand grasp an object precisely and effort-
lessly is a crucial step in prostheses design [46]. Additionally,
dexterous grasping of objects with different shapes and
sizes seems to be a big challenge in today’s prostheses. In
this section, we demonstrate the usage of gumpy to classify
four movements (Fist grasp, 2-digit grasp, 3-digit grasp, hand
open) with two different force levels (low, high). Data used in
this example study were recorded at our lab and are made pub-
licly available at gumpy’s website. Different steps for EMG
processing using gumpy are described below.

4.2.1. Filtering. EMG signals were band-pass filtered between
20 and 255 Hz and notch filtered at 50 Hz using the www.
gumpy.signal module. Feature extraction and normalization:
Filtered EMG signals were analyzed using 200 ms sliding time
windows with 50 ms overlapping [47]. The length of the slid-
ing window was chosen for the purpose of allowing real-time

Figure 7. The proposed CNN architecture, where E is the number of electrodes, T is the number of timesteps and K is the number of
classes.

Figure 8. Accuracy results obtained for individual participants using the BP features and six different machine learning classifiers, namely
quadratic LDA (QLDA), logistic regression (LR), naive bayes (NB), k-nearest neighbors (KNN), random forest (RF) and the voting
classifier (VotingC).

J. Neural Eng. 15 (2018) 065003

http://www.gumpy.signal
http://www.gumpy.signal

Z Tayeb et al

8

control. For each interval, the computed mean of the signal
was subtracted and divided by the standard deviation. Besides,
the resulting EMG signals were normalized by the maximum
voluntary isometric contraction (MVIC) magnitude. Thereaf-
ter, the root mean square (RMS) was computed in each time
window and fed into the classifier. We wish to stress that we
used the same feature extraction method to classify each type
of the associated force level (low, high).

4.2.2. Feature selection and classification. Herein, the
SFFS algorithm was used to select a certain number of fea-
tures in the k range (10, 25). Different classifiers were used
to predict one of four possible hand poses and one of the two
force levels. Offline results using SVM with three-fold strat-
ified cross validation are illustrated in figure 10. Obtained
prediction results during the real-time test, are presented in
the next section.

The validation accuracy for three different subjects were
82% (±4%) for posture classification and 96% (±3%) for
force classification. It should be noted that those results were
obtained after performing three-fold cross validation using
gumpy’s validation module.

5. Gumpy real-time applications

Aside of the offline capabilities, gumpy can be used in an
online fashion to perform real-time experiments such as
robot arm control using SSVEP, online EMG decoding and
real-time control of robots using EEG signals. All the real-
time gumpy case studies as well as the developed real-time
experimental paradigms are made available under https://
github.com/gumpy-bci/gumpy-realtime. Importantly, these
case studies can be easily modified or extended by gumpy end-
users to suit their specific applications.

5.1. Real-time robot arm control using SSVEP-based BCI

In this section, we further test and validate gumpy’s real-time
capabilities by online detection and classification of SSVEP sig-
nals for a robot arm control. SSVEP are brain events measured
after a visual flickering stimulation of a frequency between 3.5
Hz and 75 Hz. They appear as a peak in the frequency spec-
trum of the EEG signals recorded over the primary visual cortex
at the respective stimulus frequency [28]. The gumpy SSVEP
paradigm described previously in section 3.2.4 was used for

Figure 9. Accuracy results obtained for individual participants with QLDA, CNN and LSTM models.

Figure 10. Obtained results for hand posture and force classification with 3-fold cross-validation.

J. Neural Eng. 15 (2018) 065003

https://github.com/gumpy-bci/gumpy-realtime
https://github.com/gumpy-bci/gumpy-realtime

Z Tayeb et al

9

data recording. During the live experiment, the subject had to
focus on one of the four displayed checkerboards flickering at
different frequencies. Power spectral density (PSD) features
from the electrodes O1, O2, and Oz over the occipital lobe
were extracted, normalized and a principal component analysis
(PCA) was performed to reduce the dimensionality. A random
forest classifier was trained offline on recorded data collected
from four different subjects (three male, one female). A five-fold
stratified cross validation was performed to evaluate model per-
formance and to tune hyper-parameters. Afterwards, the trained
random forest classifier was used in the testing phase to perform
an online classification, where new predictions on the test data
were performed. Thereafter, a command was sent to move a six
degrees of freedom (6-DoF) robot arm in four different direc-
tions according to the position of the detected flickering object.
A flowchart of this SSVEP project is shown in figure 11. In addi-
tion, a supplementary video of this work, which shows a suc-
cessful real-time robot arm control using SSVEP-based BCI is
available in the supplementary materials section.

5.2. Real-time prosthetic hand using surface EMG signals

Herein, we describe the online decoding of three grasp poses,
namely fist grasp, 2-digit grasp and 3-digit grasp. The offline

analysis and processing described previously in section 4.2
were used. The developed algorithm was tested on two healthy
subjects. 72 trials (24 for each posture) were first acquired to
train the model. Thereafter, new 30 online trials (ten per pos-
ture) were used for online testing. The number of offline trials
used for model training has been reduced in retrospective
analysis to evaluate the effect of the training data size on the
online classification accuracy as shown in figure 12. It should
be noted that a three-fold cross validation was used to train the
(offline) model in the first place. Figure 12 shows that with 72
offline trials, an accuracy of 82% and 92% was reached for S1
and S2, respectively. Overall, it is clear that the accuracy could
be even further improved by increasing the number of training
trials. However, by using 24 trials for each posture, a good
compromise between duration of training time and accuracy of
training was found. A supplementary video of this work, which
shows a successful real-time prosthetic hand control using
sEMG is available in the supplementary materials section.

5.3. Online hybrid BCI using EEG and surface EMG for
reach-to-grasp movements

In this section, we present a case study for the hybrid BCI
approach, where the decoding of motor imagery (MI)

Figure 11. SSVEP project flowchart.

Figure 12. Online accuracy of EMG classification without force.

J. Neural Eng. 15 (2018) 065003

Z Tayeb et al

10

movements from EEG (section 4.1) was combined with pos-
ture classification from sEMG (section 5.2) in a sequential
fashion. For that, 2-MI movements, namely left and right
imagined hand movements and three classes of hand postures
(fist, 2-finger pinch and 3-finger pinch) were decoded. Classic
machine learning and deep learning approaches were com-
bined to perform an online decoding. In this example study,
the online mode was designed to perform reach-to-grasp
movement decoding, where a KUKA robot arm [48] was
controlled by MI signals (reach movement) whereas a pros-
thetic hand was controlled using sEMG signals (grasp move-
ment) in a single online experiment. One benefit offered by
combining EEG and EMG [49] is the low latency provided
by EEG when decoding reach movements as well as the
rich spectro-temporal information that can be decoded from
sEMG when classifying complex grasp movements [47, 49].
In this example study, the LSL was used to synchronize dif-
ferent data streams (EEG, EMG) and the temporal procedure
was arranged as a state machine. During the offline recording,
the program alternates between two states, which execute the
tasks related to EEG and EMG experiments. This means the
participant performed the EEG experimental paradigm first.
Thereafter, the EMG experimental paradigm was performed.
This procedure was repeated for a defined number of offline
trials, for instance 72 as was shown in the online EMG experi-
ment in section 5.2. After completion of the offline experi-
ments, the program enters a state, where the model of posture
detection was trained based on the offline recorded EMG data
whereas the MI pre-trained model was retrained based on the
offline EEG data. It should be noted that the pre-trained model
can be either a CNN or a standard machine learning classifier,
depending on the end-user’s configuration. Afterwards, the
program enters the online phase, which consists of three states
(EEG, EMG and classification). These states are performed
sequentially for a defined number of online trials. Likewise,
the EEG state was first performed and was followed by the

EMG state. As a result, data were classified and the robot arm
as well as the prosthetic hand were controlled to perform a
reach-to grasp movement as shown in figure 13. It is worth
noting that different experiments investigating the aforemen-
tioned hybrid approach are currently conducted and results
will be reported in another scientific paper.

5.4. Live generation of spectrograms

In this section, we show how to use gumpy to generate and
stream spectrograms, which could be used later on for dif-
ferent online applications. Generally, spectrograms are
generated from data within a circular buffer that stores a pre-
determined number of samples up to the most recent one.
The capacity of this buffer depends on the parameters used
for the short-time Fourier transform (STFT), namely the
window length and the overlap between consecutive windows.
The window length is chosen as a compromise between fre-
quency resolution in lower frequency bands and time resolu-
tion in higher ones. Prior to the STFT’s application, the data
are passed through the filter bank to ensure consistency in the
signal range over all spectrograms. The training of a suitable
network is realized with data augmentation methods, which
mimic the live processing, so that the network is presented
with similar data throughout training and real-time applica-
tion. The live generation system has been tested for frame
rates up to 128 Hz on a PC with a 2.8 GHz quadcore CPU,
showing a stable performance throughout. The source code
of this live interface is available in the https://github.com/
gumpy-bci/gumpy-realtime repository. Figures 14 and 15
summarize the whole process of live spectrograms genera-
tion. As shown in the video, a noticeable delay (∼1.4 s) was
experienced when performing the real-time experiment. This
delay can be attributed almost entirely to the CNN processing.
Hence, modern hardware accelerators like NVIDIA TensorRT
[50], Intel Movidius NCS [51] or even IBM TrueNorth [52]

Figure 13. The proposed hybrid BCI experiment for reach-to-grasp movements decoding.

J. Neural Eng. 15 (2018) 065003

https://github.com/gumpy-bci/gumpy-realtime
https://github.com/gumpy-bci/gumpy-realtime

Z Tayeb et al

11

could reduce the latency drastically and provide much higher
throughput for our developed deep learning models than the
standard PC we have employed.

6. Discussion and conclusion

6.1. Gumpy toolbox advantages

In this paper, we unveiled gumpy, a free and open source
Python toolbox for BCI applications. Gumpy includes
a wide range of visualization, processing and decoding
methods including feature selection algorithms, classic
machine learning classifiers, voting classifiers and several
deep learning architectures. Additionally, the toolbox is not
only limited to EEG signals, but it can be used to interpret
sEMG signals as well, hence spurring the usage of hybrid

BCI concepts. Furthermore, gumpy provides a turnkey solu-
tion to perform online BCI experiments by providing several
experimental paradigm examples including SSVEP, classic
motor imagery movements, reach-to-grasp movements, EMG
grasping tasks and online hybrid BCI experiments. In the
previous sections, we demonstrated the usage of gumpy with
two showcase examples for offline analysis using an existing
EEG dataset and new EMG data recorded at our lab. Similarly,
gumpy’s real-time capabilities were shown through the con-
trol of a robot arm using SSVEP-based BCI and the real-time
control of a prosthetic hand using sEMG. More relevantly,
gumpy includes different deep learning models such as CNN,
RCNN and LSTM which were developed and tested in this
paper to classify sensory motor rhythms from EEG signals.
Interestingly, not only a reproducibility of previous results
was achieved with gumpy but also some of the results (e.g.

Figure 14. Data streaming via LSL.

Figure 15. A frame of a live stream. Top: Filtered signal during a trial. Blue and red traces illustrate channel 1 and channel 2, respectively.
Vertical lines indicate visual (orange, arrow at t = 0 s) and acoustic cues (red). Bottom: Generated spectrograms from data within the grey
rectangle shown above.

J. Neural Eng. 15 (2018) 065003

Z Tayeb et al

12

section 4.1) outperformed state-of-the art results on the same
datasets. Thus, gumpy could foster the development of more
robust EEG/EMG decoding algorithms and open new avenues
in ongoing hybrid BCI research. Finally, it is important to
highlight that different BCI research groups are now testing
the toolbox and many students have already worked with it.
Most of the students managed to master the use of the toolbox
in less than a week.

6.2. Future development of gumpy toolbox

Despite the considerable number of functions, algorithms and
experimental paradigms that gumpy provides, further pro-
cessing methods are under development. Particularly, devel-
oping an experimental paradigm for error-related potential
(ErrP) recording as well as providing a case study for ErrPs
decoding would be of utmost importance for BCI researchers
[53, 54]. Likewise, a P300-based BCI speller paradigm is
still missing and should be added to gumpy’s experimental
paradigms. Moreover, some of the widely-used techniques in
BCI research, such as source localization [55] and connec-
tivity analysis [56] should be integrated within the gumpy
toolbox in future developments. Aside from that, it would
be important to include channel selection techniques [57] as
well as other classification methods to the toolbox, such as
Riemannian geometry-based classification [58] and restricted
Boltzmann machines [59], which have been advocated by
BCI researchers [7]. Moreover, in addition to the proposed
sequential architecture in section 5.3, it would be important
to test the simultaneous hybrid BCI, where EEG and EMG
are fused to yield one control signal. This can be done by
merging classification probabilities of EEG and EMG using
Bayesian fusion techniques [5]. Furthermore, as gumpy was
solely tested with EEG and EMG signals, performing more
analyses with other human data, such as fMRI, ECoG or MEG
could further valid ate the usefulness as well as the applica-
bility of the toolbox, thereby spur the use of gumpy in other
BCI applications. Last, we wish to highlight that some other
example studies investigating the fusion of different multi-
modal signals [57] are now under development. Interesting
works proposed before by Li et al about combining P300 and
motor imagery [27] as well as combining SSVEP and P300
[4] present good sources of inspiration for developing and
testing new multimodal BCI case studies. Along these lines,
it would be undoubtedly important to investigate the combi-
nation of ErrP and EMG as has been recently proposed by
DelPreto et al in their novel work [60].

6.3. Conclusion

This paper presents and thoroughly describes gumpy, a novel
toolbox suitable for hybrid brain computer interfaces. The
overarching aim of gumpy is to provide a libre BCI software,
which includes a wide range of functions for processing and
decoding of EEG and EMG signals as well as classification
methods with both traditional machine learning and deep
learning techniques. The offline usage of gumpy is demon-
strated with two different showcase examples. Firstly, gumpy

is used to decode two motor imagery movements using a
publicly available EEG 2b dataset from the BCI competition
IV. Different feature extraction and classification methods
have also been implemented and tested. Importantly, the
obtained results using the gumpy CNN algorithm showed
some improvement compared to obtained state-of-the art
results on the same dataset. Furthermore, gumpy is also used
to decode different grasp poses from our recorded gumpy
signals. Additionally, we show gumpy’s real-time capabili-
ties within a successful robot arm control using SSVEP sig-
nals and a prosthetic hand control using sEMG. Last, we
provide a case study where gumpy can be used to perform
online hybrid BCI experiments. Overall, there are promising
future trends for its use in various BCI applications. With
gumpy, we envision to pave the way for a new phase of open
source BCI research.

 • Supplementary video 1 about real-time robot arm
control using SSVEP-based BCI: http://youtu.be/
Dm-GGcImKjY

 • Supplementary video 2 about EEG signals decoding
using CNNs: http://youtu.be/8hM7tOd7M7A

 • Supplementary video 3 about prosthetic hand control
using surface EMG signals: http://youtu.be/igOEXp-
wfBZA

Acknowledgments

The authors would like to thank Othmane Necib, Rémi
Laumont, Maxime Kirgo, Bernhard Specht, Daniel Stichling,
Azade Farshad, and Sebastian Martinez, Constantin Uhde,
Jannick Lippert and Chen zhong for technical assistance. We
gratefully acknowledge the developers of Python, Theano,
Keras, scikit-learn, NumPy, SciPy, LSL and other software
packages that gumpy builds upon. Furthermore, we would like
to thank Stefan Ehrlich for his helpful comments on the manu-
script. Last, the authors would like to thank Prof Dongheui
Lee and Dr Pietro Falco for fruitful discussions and for pro-
viding the prosthetic hand and the KUKA robot arm.

Supplementary materials

Source code and documentation

The source code of the gumpy toolbox is released under the
MIT license and available with a detailed documentation at
http://gumpy.org. In addition, we provide a tutorial-like over-
view of the toolbox using the Python documentation generator
Sphinx. With our provided Jupyter notebooks, we facilitate
the usage of the toolbox and we give end-users insightful
information how to adjust parameters in the toolbox.

Funding

This work was supported in part by PhD grant of the German
Academic Exchange Service (DAAD) and by the Helmholtz
Association.

J. Neural Eng. 15 (2018) 065003

http://youtu.be/Dm-GGcImKjY
http://youtu.be/Dm-GGcImKjY
http://youtu.be/8hM7tOd7M7A
http://youtu.be/igOEXpwfBZA
http://youtu.be/igOEXpwfBZA
http://gumpy.org

Z Tayeb et al

13

Conflicts of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships, which
could be construed as a potential conflict of interest.

ORCID iDs

Zied Tayeb https://orcid.org/0000-0003-3257-0211
Gordon Cheng https://orcid.org/0000-0003-0770-8717

References

	 [1]	 Platts R G S and Fraser M H 1993 Assistive technology in
the rehabilitation of patients with high spinal cord lesions
Paraplegia 31 280–7

	 [2]	 Lebedev M A and Nicolelis M A L 2017 Brain-machine
interfaces: From basic science to neuroprostheses and
neurorehabilitation Physiol. Rev. 97 767–837

	 [3]	 Meng J, Zhang S, Bekyo A, Olsoe J, Baxter B and He B 2016
Noninvasive electroencephalogram based control of a
robotic arm for reach and grasp tasks Sci. Rep. 6 38565

	 [4]	 Li Y, Pan J, Wang F and Yu Z 2013 A hybrid BCI system
combining P300 and SSVEP and its application to
wheelchair control IEEE Trans. Biomed. Eng. 60 3156–66

	 [5]	 Leeb R, Sagha H, Chavarriaga R and Millán J D R 2011 A
hybrid bci based on the fusion of EEG and EMG activities
J. Neural Eng. 8 025011

	 [6]	 McFarland D J, Sarnacki W A and Wolpaw J R 2010
Electroencephalographic (EEG) control of three-
dimensional movement J. Neural Eng. 7 036007

	 [7]	 Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M,
Rakotomamonjy A and Yger F 2018 A review of
classification algorithms for EEG-based brain–computer
interfaces: a 10 year update J. Neural Eng. 15 031005

	 [8]	 Tabar Y R and Halici U 2017 A novel deep learning approach
for classification of EEG motor imagery signals J. Neural
Eng. 14 016003

	 [9]	 Ramadan R and Vasilakos A 2017 Brain–computer interface:
Control signals review Neurocomputing 223 26–44

	[10]	 Lecun Y, Bengio Y and Hinton G 2015 Deep learning Nature
521 436–44

	[11]	 Hochreiter S and Schmidhuber J 1997 Long short-term
memory Neural Comput. 9 1735–80

	[12]	 Schirrmeister R T, Springenberg J T, Fiederer L D J,
Glasstetter M, Eggensperger K, Tangermann M,
Hutter F, Burgard W and Ball T 2017 Deep learning with
convolutional neural networks for EEG decoding and
visualization Hum. Brain Mapp. 38 5391–420

	[13]	 Brunner C et al BCI software platforms
	[14]	 Kothe C A and Makeig S 2013 BCILAB: a platform for brain–

computer interface development J. Neural Eng. 10 056014
	[15]	 Delorme A and Makeig S 2004 EEGLAB: an open source

toolbox for analysis of single-trial EEG dynamics J.
Neurosci. Methods 134 9–21

	[16]	 Schalk G, McFarland D J, Hinterberger T, Birbaumer N and
Wolpaw J R 2004 BCI2000: a general-purpose brain–
computer interface (BCI) system IEEE Trans. Biomed. Eng.
51 1034–43

	[17]	 Gramfort A et al 2013 MEG and EEG data analysis with
MNE-Python Frontiers Neurosci. 7 267

	[18]	 Walt S V, Colbert S C and Varoquaux G 2011 The NumPy
array: a structure for efficient numerical computation
Comput. Sci. Eng. 13 20–3

	[19]	 Jones E et al 2001 SciPy: open source scientific tools for
Python (accessed: 03 August 2017)

	[20]	 Pedregosa F et al 2011 Scikit-learn: machine learning in
Python J. Mach. Learn. Res. 12 2825–30

	[21]	 Grosse-Wentrup M and Buss M 2008 Multiclass common
spatial patterns and information theoretic feature extraction
IEEE Trans. Biomed. Eng. 8 1991–2000

	[22]	 Bastian V, Sven D, Johannes H, Hendrik H and Benjamin B
2015 Wyrm: a brain–computer interface toolbox in Python
Neuroinformatics 13 471–86

	[23]	 Venthur B and Blankertz B 2012 Mushu, a free- and open
source BCI signal acquisition, written in Python Conf.
Proc.: Annual Int. Conf. IEEE Eng. Med. Biol. Soc. vol
2012 pp 1786–8

	[24]	 Venthur B, Scholler S, Williamson J, Dahne S, Treder M,
Kramarek M, Múller K and Blankertz B 2010 Pyff—a
pythonic framework for feedback applications and stimulus
presentation in neuroscience Frontiers Neurosci. 4 179

	[25]	 Renard Y, Lotte F, Gibert G, Congedo M, Maby E,
Delannoy V, Bertrand O and Lécuyer A 2010 Openvibe:
an open-source software platform to design, test, and use
brain–computer interfaces in real and virtual environments
Presence 19 35–53

	[26]	 Sauvan J, Lécuyer A, Lotte F and Casiez G 2009 A
performance model of selection techniques for P300-based
brain–computer interfaces CHI 4 2205–8

	[27]	 Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H and Guan C
2010 An EEG-based BCI system for 2d cursor control by
combining Mu/Beta rhythm and P300 potential IEEE Trans.
Biomed. Eng. 57 2495–505

	[28]	 Wang Y, Gao X, Hong B, Jia C and Gao S 2008 Brain–
computer interfaces based on visual evoked potentials IEEE
Eng. Med. Biol. Mag. 27 64–71

	[29]	 Lab streaming layer. Available: https://github.com/sccn/
labstreaminglayer (accessed: 18 February 2018)

	[30]	 Gailey A, Artemiadis P and Santello M 2017 Proof of concept
of an online EMG-based decoding of hand postures and
individual digit forces for prosthetic hand control Frontiers
Neurol. 8 7

	[31]	 Pygame, available: www.pygame.org/ (accessed: 05 May
2017)

	[32]	 Sathiyanarayanan M and Rajan S 2016 MYO armband for
physiotherapy healthcare: A case study using gesture
recognition application 8th Int. Conf. on Communication
Systems and Networks (COMSNETS) pp 1–6

	[33]	 Theano Development Team 2016 Theano: a Python framework
for fast computation of mathematical expressions
(arXiv:1605.02688 [cs.SC])

	[34]	 Chollet F et al 2015 Keras https://keras.io
	[35]	 Li M, Zhang M, Luo X and Yang J 2016 Combined long short-

term memory based network employing wavelet coefficients
for MI-EEG recognition IEEE Int. Conf. on Mechatronics
and Automation pp 1971–6

	[36]	 Simonyan K and Zisserman A 2014 Very deep convolutional
networks for large-scale image recognition CoRR
(arXiv:1409.1556 [cs.CV])

	[37]	 Krizhevsky A, Sutskever I and Hinton G E 2012 Imagenet
classification with deep convolutional neural networks
Proc. 25th Int. Conf. on Neural Information Processing
Systems—Volume 1 (Curran Associates Inc.) pp 1097–105

	[38]	 Leeb R, Brunner C, Mueller-Put G, Schloegl A and
Pfurtscheller G 2008 BCI competition 2008-Graz data set b
Graz University of Technology, Austria

	[39]	 Leeb R, Lee F, Keinrath C, Scherer R, Bischof H and
Pfurtscheller G 2007 Brain-computer communication:
motivation, aim, and impact of exploring a virtual
apartment IEEE Trans. Neural Syst. Rehabil. Eng.
15 473–82

J. Neural Eng. 15 (2018) 065003

https://orcid.org/0000-0003-3257-0211
https://orcid.org/0000-0003-3257-0211
https://orcid.org/0000-0003-0770-8717
https://orcid.org/0000-0003-0770-8717
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1038/srep30303
https://doi.org/10.1038/srep30303
https://doi.org/10.1109/TBME.2013.2270283
https://doi.org/10.1109/TBME.2013.2270283
https://doi.org/10.1109/TBME.2013.2270283
https://doi.org/10.1088/1741-2560/8/2/025011
https://doi.org/10.1088/1741-2560/8/2/025011
https://doi.org/10.1088/1741-2560/7/3/036007
https://doi.org/10.1088/1741-2560/7/3/036007
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1002/hbm.23730
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1007/s12021-015-9271-8
https://doi.org/10.1007/s12021-015-9271-8
https://doi.org/10.1007/s12021-015-9271-8
https://doi.org/10.3389/fnins.2010.00179
https://doi.org/10.3389/fnins.2010.00179
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1145/1518701.1519037
https://doi.org/10.1145/1518701.1519037
https://doi.org/10.1145/1518701.1519037
https://doi.org/10.1109/TBME.2010.2055564
https://doi.org/10.1109/TBME.2010.2055564
https://doi.org/10.1109/TBME.2010.2055564
https://doi.org/10.1109/MEMB.2008.923958
https://doi.org/10.1109/MEMB.2008.923958
https://doi.org/10.1109/MEMB.2008.923958
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://doi.org/10.3389/fneur.2017.00007
https://doi.org/10.3389/fneur.2017.00007
http://www.pygame.org/
https://arxiv.org/abs/1605.02688
https://keras.io
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TNSRE.2007.906956
https://doi.org/10.1109/TNSRE.2007.906956
https://doi.org/10.1109/TNSRE.2007.906956

Z Tayeb et al

14

	[40]	 Brodu N, Lotte F and Lécuyer A 2011 Comparative study
of band-power extraction techniques for motor imagery
classification IEEE Symp. on Computational Intelligence,
Cognitive Algorithms, Mind, and Brain pp 1–6

	[41]	 Müller-Gerking J, Pfurtscheller G and Flyvbjerg H 1999
Designing optimal spatial filters for single-trial EEG
classification in a movement task Clin. Neurophysiol.
110 787–98

	[42]	 Ang K K, Chin Z Y, Zhang H and Guan C 2008 Filter bank
common spatial pattern (FBCSP) in brain–computer
interface IEEE Int. Joint Conf. on Neural Networks, (IEEE
World Congress on Computational Intelligence) (IEEE) pp
2390–7

	[43]	 Sherwani F, Shanta S, Ibrahim B S K K and Huq M S 2016
Wavelet based feature extraction for classification of
motor imagery signals IEEE EMBS Conf. on Biomedical
Engineering and Sciences pp 360–4

	[44]	 Pudil P, Novovicova J and Kittler J 1994 Floating search
methods in feature selection Pattern Recognit. Lett.
15 1119–25

	[45]	 Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P and
Bengio S 2010 Why does unsupervised pre-training help
deep learning? J. Mach. Learn. 11 625–60

	[46]	 Biddiss E and Chau T 2009 The roles of predisposing
characteristics, established need and enabling resources on
upper extremity prosthesis use and abandonment Disability
Rehabil.: Assist. Technol. 71–84

	[47]	 Batzianoulis I, El-Khoury S, Pirondini E, Coscia M, Micera S
and Billard A 2017 EMG-based decoding of grasp gestures
in reaching-to-grasping motions Robot. Auton. Syst.
91 59–70

	[48]	 Bischoff R et al 2010 The KUKA-DLR lightweight robot
arm -a new reference platform for robotics research and
manufacturing ISR 2010 (41st Int. Symp. on Robotics) and
ROBOTIK 2010 (6th German Conf. on Robotics) pp 1–8

	[49]	 Artoni F, Barsotti A, Guanziroli E, Micera S, Landi A and
Molteni F 2018 Effective synchronization of EEG and

EMG for mobile brain/body imaging in clinical settings
Frontiers Hum. Neurosci. 11 652

	[50]	 NVIDIA Corporation. NVIDIA TensorRT. Available: https://
developer.nvidia.com/tensorrt (accessed: 15 April 2017)

	[51]	 Intel Corporation. Intel Movidius Neural Compute Stick.
Available: https://developer.movidius.com/ (accessed:
22 March 2017)

	[52]	 Merolla P A et al 2014 A million spiking-neuron integrated
circuit with a scalable communication network and
interface Science 345 668–73

	[53]	 Schmidt N M, Blankertz B and Treder M S 2012 Online
detection of error-related potentials boosts the performance
of mental typewriters BMC Neurosci. 13 19

	[54]	 Chavarriaga R, Sobolewski A and Millán J D R 2014 Errare
machinale est: the use of error-related potentials in brain-
machine interfaces Frontiers Neurosci. 8 208

	[55]	 Wentrup M G, Gramann K, Wascher E and Buss M 2005 EEG
source localization for brain–computer interfaces Conf. Proc.
2nd Int. IEEE EMBS Conf. on Neural Engineering pp 128–31

	[56]	 Hamedi M, Salleh S and Noor A M 2016
Electroencephalographic motor imagery brain connectivity
analysis for BCI: a review Neural Comput. 28 999–1041

	[57]	 Yu T, Yu Z, Gu Z and Li Y 2015 Grouped automatic relevance
determination and its application in channel selection
for P300 BCIs IEEE Trans. Neural Syst. Rehabil. Eng.
23 1068–77

	[58]	 Congedo M, Barachant A and Bhatia R 2017 Riemannian
geometry for EEG-based brain–computer interfaces; a
primer and a review Brain-Comput. Interfaces 4 155–74

	[59]	 Fischer A and Igel C 2012 An introduction to restricted
boltzmann machines Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications pp
14–36

	[60]	 DelPreto J, Salazar-Gomez A F, Gil S, Hasani R M,
Guenther F H and Rus D 2018 Plug-and-play supervisory
control using muscle and brain signals for real-time gesture
and error detection Proc. Robot.: Sci. Syst. (to appear)

J. Neural Eng. 15 (2018) 065003

https://doi.org/10.1016/S1388-2457(98)00038-8
https://doi.org/10.1016/S1388-2457(98)00038-8
https://doi.org/10.1016/S1388-2457(98)00038-8
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/j.robot.2016.12.014
https://doi.org/10.1016/j.robot.2016.12.014
https://doi.org/10.1016/j.robot.2016.12.014
https://doi.org/10.3389/fnhum.2017.00652
https://doi.org/10.3389/fnhum.2017.00652
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://developer.movidius.com/
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1126/science.1254642
https://doi.org/10.1186/1471-2202-13-19
https://doi.org/10.1186/1471-2202-13-19
https://doi.org/10.3389/fnins.2014.00208
https://doi.org/10.3389/fnins.2014.00208
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1109/TNSRE.2015.2413943
https://doi.org/10.1109/TNSRE.2015.2413943
https://doi.org/10.1109/TNSRE.2015.2413943
https://doi.org/10.1080/2326263X.2017.1297192
https://doi.org/10.1080/2326263X.2017.1297192
https://doi.org/10.1080/2326263X.2017.1297192

	Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces
	Abstract
	1. Introduction
	2. Related work
	2.1. BCILAB
	2.2. BCI2000
	2.3. MNE
	2.4. Wyrm
	2.5. OpenViBE
	2.6. Distinctive features of gumpy

	3. Gumpy toolbox: design, main functions and features
	3.1. General overview of gumpy’s modules
	3.2. Gumpy’s experimental paradigms
	3.2.1. Classic motor imagery movements. 
	3.2.2. Reach-to-grasp motor imagery movements. 
	3.2.3. Grasp poses and related finger forces from surface EMG signals. 
	3.2.4. Gumpy-SSVEP paradigm. 
	3.2.5. Gumpy’s experimental paradigm for real-time hybrid BCI. 

	3.3. Gumpy’s deep learning module
	3.3.1. Recurrent neural networks (RNN). 
	3.3.2. Convolutional neural network (CNN). 

	4. Offline analysis case studies
	4.1. Decoding of two motor imagery movements from Graz 2b EEG signals
	4.1.1. Standard machine learning techniques. 
	4.1.2. Deep learning techniques. 

	4.2. Decoding of natural grasps from surface EMG signals
	4.2.1. Filtering. 
	4.2.2. Feature selection and classification. 

	5. Gumpy real-time applications
	5.1. Real-time robot arm control using SSVEP-based BCI
	5.2. Real-time prosthetic hand using surface EMG signals
	5.3. Online hybrid BCI using EEG and surface EMG for reach-to-grasp movements
	5.4. Live generation of spectrograms

	6. Discussion and conclusion
	6.1. Gumpy toolbox advantages
	6.2. Future development of gumpy toolbox
	6.3. Conclusion

	Acknowledgments
	Supplementary materials
	Source code and documentation
	Funding
	Conflicts of interest
	ORCID iDs
	References

