
Journal of Neural Engineering

PAPER

Gumpy: a Python toolbox suitable for hybrid brain–computer interfaces
To cite this article: Zied Tayeb et al 2018 J. Neural Eng. 15 065003

 

View the article online for updates and enhancements.

This content was downloaded from IP address 129.187.254.46 on 02/11/2018 at 08:15

https://doi.org/10.1088/1741-2552/aae186
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/606092267/Middle/IOPP/IOPs-Mid-JNE-pdf/IOPs-Mid-JNE-pdf.jpg/1?


1 © 2018 IOP Publishing Ltd Printed in the UK

1. Introduction

Paralyzed people wish to control assistive devices such as 
wheelchairs, spellers, prosthetics, or exoskeletons in order to 
improve their quality of life and ensure their independence [1]. 
One way to infer their desired actions is to measure their cor-
tical activity, for instance by functional magnetic resonance 
imaging (fMRI), magnetoencephalography (MEG), electro-
corticography (ECoG), or electroencephalography (EEG) and 

subsequently decode the intended movement from the mea-
surements. Of these methods, EEG has become the most fre-
quently used technique for BCIs, because it is non-invasive 
and comparably inexpensive. Although BCI technology has 
seen significant improvements over the last few years [2, 3], it 
still lacks reliability and accuracy. Hybrid BCIs in general [4], 
and particularly those which combine EEG and EMG signals 
are promising significant improvements [5]. Despite the suc-
cessful multidimensional EEG-based BCI control achieved 
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Abstract
Objective. The objective of this work is to present gumpy, a new free and open source Python 
toolbox designed for hybrid brain–computer interface (BCI). Approach. Gumpy provides 
state-of-the-art algorithms and includes a rich selection of signal processing methods that 
have been employed by the BCI community over the last 20 years. In addition, a wide range 
of classification methods that span from classical machine learning algorithms to deep 
neural network models are provided. Gumpy can be used for both EEG and EMG biosignal 
analysis, visualization, real-time streaming and decoding. Results. The usage of the toolbox 
was demonstrated through two different offline example studies, namely movement prediction 
from EEG motor imagery, and the decoding of natural grasp movements with the applied 
finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-
time control of a robot arm using steady-state visually evoked potentials (SSVEP) as well as 
for real-time prosthetic hand control using sEMG. Overall, obtained results with the gumpy 
toolbox are comparable or better than previously reported results on the same datasets. 
Significance. Gumpy is a free and open source software, which allows end-users to perform 
online hybrid BCIs and provides different techniques for processing and decoding of EEG 
and EMG signals. More importantly, the achieved results reveal that gumpy’s deep learning 
toolbox can match or outperform the state-of-the-art in terms of accuracy. This can therefore 
enable BCI researchers to develop more robust decoding algorithms using novel techniques 
and hence chart a route ahead for new BCI improvements.
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using simple classifiers [3, 6], reliable decoding of complex 
movements from brain signals is still challenging and requires 
advanced algorithms [7]. Recent developed techniques such 
as deep neural networks [8] could represent a promising solu-
tion to develop more robust decoding algorithms [7]. In order 
to make such algorithms readily available to a wide BCI com-
munity we developed gumpy, a Python library along with 
well documented application examples that we introduce in 
this paper. Gumpy is an easy-to-use, robust, and powerful 
software package for EEG and EMG signal analysis and 
decoding that tightly incorporates different recording para-
digms, essential signal processing techniques, and state-of-
the-art machine learning algorithms. Gumpy can be used 
for offline as well as for online processing of electrophysi-
ological signals. Several similar BCI software packages exist 
and are widely used by the community [9]. Gumpy is free of 
charge, permissively licensed and written in Python, an open 
source programming language that is not only backed by an 
extensive standard library, but also by vast scientific com-
puting libraries. Moreover, it is widely used by many machine 
learning experts, engineers and neuroscientists. Gumpy offers 
users the opportunity to reproduce results previously achieved 
by other BCI researchers through implementing a wide range 
of signal processing and classification methods for time series 
signal analysis. Furthermore, the toolbox features several deep 
learning models such as deep convolutional neural networks 
(CNN) [10], recurrent convolutional neural networks (RCNN) 
and long short-term memory (LSTM) [11]. Those approaches 
have hitherto been rarely investigated by BCI researchers [12] 
and to the best of our knowledge no existing BCI software 
integrates similar techniques. This paper introduces the basic 
concept of gumpy, its main features and three successful BCI 
applications. The remainder of this paper is structured as fol-
lows: section  2 provides an overview of related work and 
reviews existing BCI toolboxes. Section 3 describes gumpy’s 
design and its main features and functions. Sections 4 and 5 
demonstrate, respectively, the basic offline and online usage of 
gumpy on different tasks, such as motor imagery (MI) move-
ments decoding from EEG, and the prediction of hand gestures 
from sEMG. Finally, section 6 enumerates gumpy’s strengths 
and weaknesses and proposes possible future developments.

2. Related work

This section  provides an overview of the most widely-used 
open source BCI platforms for research and highlights the 
distinctive features of gumpy with respect to them. Table  1 
summarizes their main functions and limitations. References 
[9, 13] provide a more comprehensive survey. The discussion 
focuses on a particular feature set that we deem essential for 
the successful development of future hybrid BCI systems.

2.1. BCILAB

BCILAB [14] is among the earliest publicly available BCI 
software packages for research purposes. It is a free, open 
source toolbox developed in Matlab. BCILAB is built to 

emulate the plugin concept where various components can be 
added ‘on the fly’ during the runtime. BCILAB was designed 
as an extension of EEGLAB [15] to support both offline and 
online analysis of electrophysiological signals. Besides var-
ious feature extraction methods and experimental paradigms 
supported by the toolbox, an end-user can choose between 
three different classifiers (linear discriminant analysis (LDA), 
quadratic discriminant analysis (QDA) and support vector 
machine (SVM)). In addition, BCILAB obliges users to 
design their scripts in Matlab [14].

2.2. BCI2000

BCI2000 [16] is an open source and free of charge BCI soft-
ware package developed in 2000 to advance real-time BCI 
systems. It includes different modules such as data acquisi-
tion, signal processing and stimulus presentation. The toolbox 
is written in C  +  + and does not directly support other pro-
gramming languages such as Matlab or Python, so in this 
regard it is difficult to extend and integrate with other tool-
boxes. Furthermore, some important processing methods such 
as discrete wavelet transform and some classification tech-
niques such as deep learning are not included [16].

2.3. MNE

MNE is an open source Python package for MEG/EEG data 
analysis. MNE implements a wide range of functions for 
time-frequency analysis and connectivity estimation as well 
as simple decoding algorithms [17]. Similar to gumpy, it is 
built on top of widely used scientific computing libraries such 
as NumPy [18], SciPy [19], pandas and scikit-learn [20]. 
Moreover, MNE offers functions for neuroimaging data inter-
pretation such as fMRI analysis. Despite recent developments, 
the toolbox still lacks some important functions and methods, 
such as common spatial pattern algorithm (CSP) [21] and var-
ious popular machine learning classifiers.

2.4. Wyrm

Wyrm [22] is an open source BCI package written in Python. 
The toolbox implements several functions for processing 
and visualization of electrophysiological data such as EEG 
and ECoG signals. Moreover, Wyrm is suitable for both 
offline processing and real-time applications. Furthermore, 
the toolbox integrates Mushu [23] a free software for signals 
acquisition, and Pyff [24], which is a framework for BCI feed-
back applications.

2.5. OpenViBE

OpenViBE [25], another open source BCI platform, is 
designed in a modular fashion and incorporates an elegant 
graphical user interface for novice users. Moreover, it pro-
vides a wide range of signal processing techniques and sup-
ports many acquisition and BCI paradigms such as P300 [26, 
27] and SSVEP [28]. One of OpenViBE’s advantages with 
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respect to the previously mentioned toolboxes is that it can be 
scripted using both LUA and Python. In addition, it offers a 
direct interface to Matlab. OpenViBE currently provides three 
classifiers: LDA, SVM as well as a combined classifier for a 
multi-class problem classification.

2.6. Distinctive features of gumpy

Despite the tremendous number of features that current BCI 
toolboxes offer, they still exhibit some limitations [13] such as 
a lack of important processing and classification methods, lim-
ited real-time performance, or lack of experimental paradigms 
to conduct online BCI experiments. More importantly, none 
of the existing packages combine classic machine learning 
algorithms and deep learning techniques for signals decoding. 
However, gumpy covers a wide range of classification methods 
including several machine learning classifiers, voting classi-
fiers, feature selection algorithms and different deep learning 
architectures such as LSTM, CNN and RCNN. Additionally, 
we provide many showcase examples of the usage of gumpy 
for EEG and EMG signals decoding, thereby facilitating the 
design of hybrid BCI systems. Furthermore, gumpy integrates 
different experimental paradigms for motor imagery, EMG, 
SSVEP, EEG reach-to-grasp movements recording and hybrid 
BCI, which can be easily used and extended by end-users. 
Importantly, gumpy supports offline analysis as well as online 
BCI applications. With the lab streaming layer (LSL) [29] for 
data acquisition, the provided experimental paradigms for 
biosignals recording and gumpy package for EEG and EMG 
data processing and decoding, we envision gumpy to be a suit-
able toolkit for conducting online hybrid BCI experiments.

3. Gumpy toolbox: design, main functions 
and features

3.1. General overview of gumpy’s modules

Gumpy comprises six modules for plotting, processing, and 
classification of EEG and EMG signals. Moreover, gumpy 
incorporates different deep learning models and experimental 
recording paradigms. This section provides a condensed over-
view of gumpy’s modules and its main functionality, which are 
summarized in figure 1. Some of the modules are described in 
more detail in the following section on exemplary use-cases. 
Particularly, section  3.3 covers the available deep learning 

classifiers. Where possible, gumpy leverages existing and well 
established scientific and numerical libraries such as NumPy 
[18], SciPy [19] and scikit-learn [20] to compute the clas-
sification results or to perform signal analysis. For instance, 
gumpy’s SVM classifier utilizes scikit-learn. However, gumpy 
preconfigures its classifiers with default parameters that were 
found to be suitable in typical BCI applications. In addition, 
gumpy can perform a grid search to tune their settings. One 
of gumpy’s core design principles is to allow users to easily 
extend its functionality, thereby facilitating usability, custom-
izability and collaborative development. The latter is further 
enabled using our public git repository at https://github.com/
gumpy-bci through which we solicit the community to con-
tribute feedback and code. In addition, the website http://
gumpy.org/ provides an API reference and usage examples in 
the form of Jupyter notebooks.

3.2. Gumpy’s experimental paradigms

3.2.1. Classic motor imagery movements. Gumpy provides a 
cue-based screening paradigm to record classic motor imag-
ery; namely the imagination of the movement of left hand, 
right hand or both hands as shown in figure 2. At predefined 
times, the screen displays a cue in the form of an arrow point-
ing either left, right or both ways. The participant has to per-
form a hand movement imagination accordingly.

3.2.2. Reach-to-grasp motor imagery movements. Gumpy 
incorporates a paradigm to record EEG reach-to-grasp move-
ments imagination of six different objects placed on a shelf 
with fixed positions as shown in figure 3. The subject is asked 
to imagine a reach movement by bringing the cursor (square) 
toward one of the six center-out target locations (up-left, up-
right, center-left, center-right, down-left, down-right). Once 
the square hits the target, it turns red which triggers the par-
ticipant to now imagine performing a grasping movement on 
that specific target.

3.2.3. Grasp poses and related finger forces from surface 
EMG signals. A special experimental paradigm was designed 
to record sEMG signals from the forearm during four different 
hand movements (2-digit grasp, 3-digit grasp, fist, hand open) 
as shown in figure 4 with two possible force levels (high, low). 
Strain gauge sensors placed on the fingertips measured the 
applied grasping force [30] .

Table 1. General overview of existing BCI toolboxes.

Software platform Programming language Features

BCILAB Matlab Wide range of algorithms well-designed GUI
BCI2000 C  +  + Simple and robust wide usage by BCI community 

modular programming
MNE Python EEG, MEG and fMRI data analysis good documentation
Wyrm Python EEG and ECoG signals real-time capabilities integration 

with other platforms
OpenViBE LUA, Python Modular API supports many acquisition devices
Gumpy Python Hybrid BCI real-time capabilities offline and online 

analyses deep learning toolbox

J. Neural Eng. 15 (2018) 065003
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3.2.4. Gumpy-SSVEP paradigm. The SSVEP paradigm con-
sists of four flickering checkerboards blinking at different fre-
quencies (13, 15, 17 and 19 Hz), as shown in figure 5. The 
subject has to focus on one of the flickering checkerboards 
in order to evoke an SSVEP response. Simultaneously, EEG 
signals recording from O1, OZ and O2 electrodes were per-
formed. The paradigm was implemented using PyGame [31], 
a gaming-oriented Python library for graphical user interfaces. 
It requires a monitor supporting sufficiently high (or dynamic) 
refresh rates.

3.2.5. Gumpy’s experimental paradigm for real-time hybrid 
BCI. The hybrid BCI paradigm allows end users to perform 
online hybrid BCI experiments. For instance, this paradigm 

was used to perform a sequential hybrid BCI task, where the 
subject was asked to imagine left or right hand movement 
imagination and execute thereafter the same imagined move-
ment. For that, a simultaneous recording of EEG and sEMG 
signals was performed using two synchronized g.USBamp 
devices. Signals were sampled at 512 Hz and the LSL was 
used for data acquisition in a master-slave communication 
fashion. It should be noted that the developed paradigm could 
be used to simultaneously collect data from other devices (e.g. 
Myo armband [32] and the g.USBamp) and could be easily 
modified to acquire other types of biosignals. A detailed docu-
mentation of the hybrid paradigm as well as the developed 
code are made publicly available within gumpy under https://
github.com/gumpy-bci

Figure 1. Overview of gumpy toolbox modules and functions.

Figure 2. Illustration of recording paradigm for three motor imagery EEG data acquisition. (a) Photograph of a recording session.  
(b) Outline of the designed recording paradigm.

J. Neural Eng. 15 (2018) 065003
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3.3. Gumpy’s deep learning module

Despite the numerous successful applications of deep neural 
networks [10], the development of deep learning methods in 
the BCI field is still quite rare [12]. In this section, we describe 

gumpy’s deep learning module, which is based on Theano [33] 
and Keras [34], as well as different implemented and available 
network architectures.

3.3.1. Recurrent neural networks (RNN). Recurrent neural 
networks and particularly long short-term memory (LSTM) 
have been used successfully to model the temporal charac-
teristics of diverse non-stationary and non-linear time-series 
signals. Likewise, such methods should be applicable to EEG 
data as well [35]. Gumpy makes LSTMs and other recurrent 
architectures like vanilla RNN and recurrent convolutional 
neural networks (RCNN) readily available and provides well-
documented example code. The architecture of the LSTM 
algorithm distributed with the initial gumpy release is shown 
in figure 6. It consists of one LSTM layer consisting of 128 
cells and an input layer where E represents the electrode chan-
nels, T represents the number of samples in every channel and 
K the number of output classes.

Figure 3. Illustration of recording paradigm for reach-to-grasp movements. (a) Display requests subject to imaginatively reach for the mid-
left cup in the shelf. (b) Subject is requested to imagine grasping the center-right cup.

Figure 4. EMG recording paradigm. (a) Different hand gesture renderings prompting subjects. (b) Recording setup of EMG signals during 
grasp movements.

Figure 5. Illustration of the recording paradigm for SSVEP.

J. Neural Eng. 15 (2018) 065003
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3.3.2. Convolutional neural network (CNN). The proposed 
CNN model architecture is illustrated in figure  7. The net-
work architecture is inspired by CNNs used in the ImageNet 
competition, such as VGGNet [36] and AlexNet [37]. It uses 
stacked convolutional layers with decreasing size and increas-
ing number of filter kernels in deeper layers. After each con-
volutional layer, batch normalization is applied to reduce 
covariate shift in intermediate representations and improve 
robustness. The actual spectrogram representation of the EEG 
signal is computed in the first layer and used as an input to the 
model. A more detailed description of the CNN architecture 
and its implementation will be provided elsewhere.

4. Offline analysis case studies

In this section, we show how to use gumpy to perform offline 
analysis of EEG/EMG data. As a result, researchers can easily 
reproduce the obtained results using our provided Jupyter 
notebooks, our freely available EEG/EMG recorded data or 
the EEG dataset 2b from BCI competition IV [38] as well as 
gumpy’s available experimental paradigms.

4.1. Decoding of two motor imagery movements from Graz 
2b EEG signals

We used gumpy’s signal and classification developed modules 
to process and classify an existing EEG dataset known as 2b 
EEG dataset from ‘BCI Competition IV’ [39]. The source 
code (Jupyter notebooks) utilized in these offline examples 
are freely available under http://gumpy.org/

4.1.1. Standard machine learning techniques. Three feature 
extraction methods, i.e. logarithmic band power (BP) [40], 
common spatial patterns (CSP) [41, 42] and discrete wave-
let transform [43], have been investigated and tested. In gen-
eral, CSP features maximize the pairwise compound variance 
between two or more classes in the least square sense, whereas 
wavelet features provide an effective time-frequency represen-
tation of non-stationary signals [43]. We wish to emphasize 
that those feature extraction methods have been advocated by 

BCI researchers in [7]. After extracting discriminative features, 
www.gumpy.features.sequential_feature_selector was used to 
automatically select a subset of features in the feature space 
using the sequential feature selection algorithm (SFSF) [44]. 
The www.gumpy.split module provides several methods for 
splitting data. Herein, we used the hold-out strategy by split-
ting the dataset into 80% for training and 20% for test using 
the www.gumpy.split module. A ten-fold cross validation was 
performed on the training set to select the best features using 
six different classifiers from the www.gumpy.classification 
module. Afterwards, the new generated subsets based on the 
selected features were fed into each classifier and new predic-
tions were made on the testing dataset. Furthermore, we wish 
to mention that the classification module incorporates a voting 
classifier, which employs an ensemble of classifiers to ‘vote’ 
using their respective results. Finally, it should be noted that 
www.gumpy.classification can also perform a grid search to 
select the best hyper parameters for SVM and random forest 
classifiers for a given k-fold cross validation. Noticeably, BP 
slightly outperforms the other two feature extraction methods 
and provides overall better results across the different nine 
subjects. The obtained classification results with the BP fea-
ture extraction method with six different algorithms including 
the voting classifier are shown below in figure 8. Overall, the 
obtained results from individual subjects show inter- and intra-
subject variability. According to their performance, the nine 
participants could be classified into three categories: Bad par-
ticipants are S1, S2, S3 and S7 with a classification accuracy 
between 60% to 70%, good participants are S5, S6, S8 and S9 
with a classification accuracy between 70% to 82%, and an 
excellent participant S4 with an average classification accuracy 
of 93.75%. It is worth noting that a comparable performance 
was obtained with the CSP features. A Jupyter notebook show-
ing how to use the three different feature extraction methods 
with the different available classifiers, is made publicly avail-
able under https://github.com/gumpy-bci

4.1.2. Deep learning techniques. Two deep neural network 
algorithms for motor imagery classification using the www.
gumpy.deep_learning module were investigated and tested: 
convolutional and recurrent neural networks. Firstly, an 
LSTM model with only one hidden layer consisting of 128 
LSTM memory cells was tested. To assess the model’s capa-
bility of autonomously learning discriminative features, only 
raw EEG signals were fed into the algorithm. The large num-
ber of parameters of the LSTM model makes the model prone 
to overfitting. A dropout layer with a deactivation rate of 0.05 
between the output and the LSTM layer partially mitigates 
this problem. Second, a CNN algorithm was implemented and 
tested. Recorded EEG signals were first cropped into short, 
overlapping time-windows. Thereafter, a fast Fourier trans-
form (FFT) was performed on each crop, assuming stationar-
ity in short time-frames. Spectrograms from three electrodes 
C3, C4 and Cz in the frequency band of 25–40 Hz were com-
puted and used as inputs to our proposed CNN algorithm. 
Parameters were set to n  =  1024 FFT samples and a time 
shift of s  =  16 time steps between STFT windows. For each 
of the nine participants, a stratified five-fold cross-validation 

Figure 6. Implemented LSTM architecture.
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was applied. Four folds were used for training and validation 
(90% training, 10% validation) and the last fold was used for 
testing. Finally, we point out that early stopping [45] was used 
to avoid overfitting. That means the model is trained until the 
minimum of the validation loss is found and then tested on 
the test data to measure its generalization capabilities. Inter-
estingly, the obtained results with the CNN model outper-
formed the state of the art results on the same dataset, which 
were obtained with classic methods. However, LSTM results 
were similar to those obtained with traditional methods (e.g. 
quadratic LDA) as shown in figure 9. An intuitive reason of 
that could be the limited amount of training data. As a result, 
reducing model complexity by decreasing the number of cell 
memories would be a promising solution to improve the devel-
oped algorithm. After validating the offline results, we wish to 
mention that the testing phase was done online and a success-
ful real-time control of a robot arm was performed using the 
trained proposed CNN model as shown in the supplementary 
video in the supplementary materials section.

4.2. Decoding of natural grasps from surface EMG signals

Making a prosthetic hand grasp an object precisely and effort-
lessly is a crucial step in prostheses design [46]. Additionally, 
dexterous grasping of objects with different shapes and 
sizes seems to be a big challenge in today’s prostheses. In 
this section, we demonstrate the usage of gumpy to classify 
four movements (Fist grasp, 2-digit grasp, 3-digit grasp, hand 
open) with two different force levels (low, high). Data used in 
this example study were recorded at our lab and are made pub-
licly available at gumpy’s website. Different steps for EMG 
processing using gumpy are described below.

4.2.1. Filtering. EMG signals were band-pass filtered between 
20 and 255 Hz and notch filtered at 50 Hz using the www.
gumpy.signal module. Feature extraction and normalization: 
Filtered EMG signals were analyzed using 200 ms sliding time 
windows with 50 ms overlapping [47]. The length of the slid-
ing window was chosen for the purpose of allowing real-time 

Figure 7. The proposed CNN architecture, where E is the number of electrodes, T is the number of timesteps and K is the number of 
classes.

Figure 8. Accuracy results obtained for individual participants using the BP features and six different machine learning classifiers, namely 
quadratic LDA (QLDA), logistic regression (LR), naive bayes (NB), k-nearest neighbors (KNN), random forest (RF) and the voting 
classifier (VotingC).

J. Neural Eng. 15 (2018) 065003

http://www.gumpy.signal
http://www.gumpy.signal


Z Tayeb et al

8

control. For each interval, the computed mean of the signal 
was subtracted and divided by the standard deviation. Besides, 
the resulting EMG signals were normalized by the maximum 
voluntary isometric contraction (MVIC) magnitude. Thereaf-
ter, the root mean square (RMS) was computed in each time 
window and fed into the classifier. We wish to stress that we 
used the same feature extraction method to classify each type 
of the associated force level (low, high).

4.2.2. Feature selection and classification. Herein, the 
SFFS algorithm was used to select a certain number of fea-
tures in the k range (10, 25). Different classifiers were used 
to predict one of four possible hand poses and one of the two 
force levels. Offline results using SVM with three-fold strat-
ified cross validation are illustrated in figure  10. Obtained 
prediction results during the real-time test, are presented in 
the next section.

The validation accuracy for three different subjects were 
82% (±4%) for posture classification and 96% (±3%) for 
force classification. It should be noted that those results were 
obtained after performing three-fold cross validation using 
gumpy’s validation module.

5. Gumpy real-time applications

Aside of the offline capabilities, gumpy can be used in an 
online fashion to perform real-time experiments such as 
robot arm control using SSVEP, online EMG decoding and 
real-time control of robots using EEG signals. All the real-
time gumpy case studies as well as the developed real-time 
experimental paradigms are made available under https://
github.com/gumpy-bci/gumpy-realtime. Importantly, these 
case studies can be easily modified or extended by gumpy end-
users to suit their specific applications.

5.1. Real-time robot arm control using SSVEP-based BCI

In this section, we further test and validate gumpy’s real-time 
capabilities by online detection and classification of SSVEP sig-
nals for a robot arm control. SSVEP are brain events measured 
after a visual flickering stimulation of a frequency between 3.5 
Hz and 75 Hz. They appear as a peak in the frequency spec-
trum of the EEG signals recorded over the primary visual cortex 
at the respective stimulus frequency [28]. The gumpy SSVEP 
paradigm described previously in section  3.2.4 was used for 

Figure 9. Accuracy results obtained for individual participants with QLDA, CNN and LSTM models.

Figure 10. Obtained results for hand posture and force classification with 3-fold cross-validation.

J. Neural Eng. 15 (2018) 065003
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data recording. During the live experiment, the subject had to 
focus on one of the four displayed checkerboards flickering at 
different frequencies. Power spectral density (PSD) features 
from the electrodes O1, O2, and Oz over the occipital lobe 
were extracted, normalized and a principal component analysis 
(PCA) was performed to reduce the dimensionality. A random 
forest classifier was trained offline on recorded data collected 
from four different subjects (three male, one female). A five-fold 
stratified cross validation was performed to evaluate model per-
formance and to tune hyper-parameters. Afterwards, the trained 
random forest classifier was used in the testing phase to perform 
an online classification, where new predictions on the test data 
were performed. Thereafter, a command was sent to move a six 
degrees of freedom (6-DoF) robot arm in four different direc-
tions according to the position of the detected flickering object. 
A flowchart of this SSVEP project is shown in figure 11. In addi-
tion, a supplementary video of this work, which shows a suc-
cessful real-time robot arm control using SSVEP-based BCI is 
available in the supplementary materials section.

5.2. Real-time prosthetic hand using surface EMG signals

Herein, we describe the online decoding of three grasp poses, 
namely fist grasp, 2-digit grasp and 3-digit grasp. The offline 

analysis and processing described previously in section  4.2 
were used. The developed algorithm was tested on two healthy 
subjects. 72 trials (24 for each posture) were first acquired to 
train the model. Thereafter, new 30 online trials (ten per pos-
ture) were used for online testing. The number of offline trials 
used for model training has been reduced in retrospective 
analysis to evaluate the effect of the training data size on the 
online classification accuracy as shown in figure 12. It should 
be noted that a three-fold cross validation was used to train the 
(offline) model in the first place. Figure 12 shows that with 72 
offline trials, an accuracy of 82% and 92% was reached for S1 
and S2, respectively. Overall, it is clear that the accuracy could 
be even further improved by increasing the number of training 
trials. However, by using 24 trials for each posture, a good 
compromise between duration of training time and accuracy of 
training was found. A supplementary video of this work, which 
shows a successful real-time prosthetic hand control using 
sEMG is available in the supplementary materials section.

5.3. Online hybrid BCI using EEG and surface EMG for 
reach-to-grasp movements

In this section, we present a case study for the hybrid BCI 
approach, where the decoding of motor imagery (MI) 

Figure 11. SSVEP project flowchart.

Figure 12. Online accuracy of EMG classification without force.

J. Neural Eng. 15 (2018) 065003
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movements from EEG (section 4.1) was combined with pos-
ture classification from sEMG (section 5.2) in a sequential 
fashion. For that, 2-MI movements, namely left and right 
imagined hand movements and three classes of hand postures 
(fist, 2-finger pinch and 3-finger pinch) were decoded. Classic 
machine learning and deep learning approaches were com-
bined to perform an online decoding. In this example study, 
the online mode was designed to perform reach-to-grasp 
movement decoding, where a KUKA robot arm [48] was 
controlled by MI signals (reach movement) whereas a pros-
thetic hand was controlled using sEMG signals (grasp move-
ment) in a single online experiment. One benefit offered by 
combining EEG and EMG [49] is the low latency provided 
by EEG when decoding reach movements as well as the 
rich spectro-temporal information that can be decoded from 
sEMG when classifying complex grasp movements [47, 49]. 
In this example study, the LSL was used to synchronize dif-
ferent data streams (EEG, EMG) and the temporal procedure 
was arranged as a state machine. During the offline recording, 
the program alternates between two states, which execute the 
tasks related to EEG and EMG experiments. This means the 
participant performed the EEG experimental paradigm first. 
Thereafter, the EMG experimental paradigm was performed. 
This procedure was repeated for a defined number of offline 
trials, for instance 72 as was shown in the online EMG experi-
ment in section  5.2. After completion of the offline experi-
ments, the program enters a state, where the model of posture 
detection was trained based on the offline recorded EMG data 
whereas the MI pre-trained model was retrained based on the 
offline EEG data. It should be noted that the pre-trained model 
can be either a CNN or a standard machine learning classifier, 
depending on the end-user’s configuration. Afterwards, the 
program enters the online phase, which consists of three states 
(EEG, EMG and classification). These states are performed 
sequentially for a defined number of online trials. Likewise, 
the EEG state was first performed and was followed by the 

EMG state. As a result, data were classified and the robot arm 
as well as the prosthetic hand were controlled to perform a 
reach-to grasp movement as shown in figure 13. It is worth 
noting that different experiments investigating the aforemen-
tioned hybrid approach are currently conducted and results 
will be reported in another scientific paper.

5.4. Live generation of spectrograms

In this section, we show how to use gumpy to generate and 
stream spectrograms, which could be used later on for dif-
ferent online applications. Generally, spectrograms are 
generated from data within a circular buffer that stores a pre-
determined number of samples up to the most recent one. 
The capacity of this buffer depends on the parameters used 
for the short-time Fourier transform (STFT), namely the 
window length and the overlap between consecutive windows. 
The window length is chosen as a compromise between fre-
quency resolution in lower frequency bands and time resolu-
tion in higher ones. Prior to the STFT’s application, the data 
are passed through the filter bank to ensure consistency in the 
signal range over all spectrograms. The training of a suitable 
network is realized with data augmentation methods, which 
mimic the live processing, so that the network is presented 
with similar data throughout training and real-time applica-
tion. The live generation system has been tested for frame 
rates up to 128 Hz on a PC with a 2.8 GHz quadcore CPU, 
showing a stable performance throughout. The source code 
of this live interface is available in the https://github.com/
gumpy-bci/gumpy-realtime repository. Figures  14 and 15 
summarize the whole process of live spectrograms genera-
tion. As shown in the video, a noticeable delay (∼1.4 s) was 
experienced when performing the real-time experiment. This 
delay can be attributed almost entirely to the CNN processing. 
Hence, modern hardware accelerators like NVIDIA TensorRT 
[50], Intel Movidius NCS [51] or even IBM TrueNorth [52] 

Figure 13. The proposed hybrid BCI experiment for reach-to-grasp movements decoding.
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could reduce the latency drastically and provide much higher 
throughput for our developed deep learning models than the 
standard PC we have employed.

6. Discussion and conclusion

6.1. Gumpy toolbox advantages

In this paper, we unveiled gumpy, a free and open source 
Python toolbox for BCI applications. Gumpy includes 
a wide range of visualization, processing and decoding 
methods including feature selection algorithms, classic 
machine learning classifiers, voting classifiers and several 
deep learning architectures. Additionally, the toolbox is not 
only limited to EEG signals, but it can be used to interpret 
sEMG signals as well, hence spurring the usage of hybrid 

BCI concepts. Furthermore, gumpy provides a turnkey solu-
tion to perform online BCI experiments by providing several 
experimental paradigm examples including SSVEP, classic 
motor imagery movements, reach-to-grasp movements, EMG 
grasping tasks and online hybrid BCI experiments. In the 
previous sections, we demonstrated the usage of gumpy with 
two showcase examples for offline analysis using an existing 
EEG dataset and new EMG data recorded at our lab. Similarly, 
gumpy’s real-time capabilities were shown through the con-
trol of a robot arm using SSVEP-based BCI and the real-time 
control of a prosthetic hand using sEMG. More relevantly, 
gumpy includes different deep learning models such as CNN, 
RCNN and LSTM which were developed and tested in this 
paper to classify sensory motor rhythms from EEG signals. 
Interestingly, not only a reproducibility of previous results 
was achieved with gumpy but also some of the results (e.g. 

Figure 14. Data streaming via LSL.

Figure 15. A frame of a live stream. Top: Filtered signal during a trial. Blue and red traces illustrate channel 1 and channel 2, respectively. 
Vertical lines indicate visual (orange, arrow at t  =  0 s) and acoustic cues (red). Bottom: Generated spectrograms from data within the grey 
rectangle shown above.
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section 4.1) outperformed state-of-the art results on the same 
datasets. Thus, gumpy could foster the development of more 
robust EEG/EMG decoding algorithms and open new avenues 
in ongoing hybrid BCI research. Finally, it is important to 
highlight that different BCI research groups are now testing 
the toolbox and many students have already worked with it. 
Most of the students managed to master the use of the toolbox 
in less than a week.

6.2. Future development of gumpy toolbox

Despite the considerable number of functions, algorithms and 
experimental paradigms that gumpy provides, further pro-
cessing methods are under development. Particularly, devel-
oping an experimental paradigm for error-related potential 
(ErrP) recording as well as providing a case study for ErrPs 
decoding would be of utmost importance for BCI researchers 
[53, 54]. Likewise, a P300-based BCI speller paradigm is 
still missing and should be added to gumpy’s experimental 
paradigms. Moreover, some of the widely-used techniques in 
BCI research, such as source localization [55] and connec-
tivity analysis [56] should be integrated within the gumpy 
toolbox in future developments. Aside from that, it would 
be important to include channel selection techniques [57] as 
well as other classification methods to the toolbox, such as 
Riemannian geometry-based classification [58] and restricted 
Boltzmann machines [59], which have been advocated by 
BCI researchers [7]. Moreover, in addition to the proposed 
sequential architecture in section 5.3, it would be important 
to test the simultaneous hybrid BCI, where EEG and EMG 
are fused to yield one control signal. This can be done by 
merging classification probabilities of EEG and EMG using 
Bayesian fusion techniques [5]. Furthermore, as gumpy was 
solely tested with EEG and EMG signals, performing more 
analyses with other human data, such as fMRI, ECoG or MEG 
could further valid ate the usefulness as well as the applica-
bility of the toolbox, thereby spur the use of gumpy in other 
BCI applications. Last, we wish to highlight that some other 
example studies investigating the fusion of different multi-
modal signals [57] are now under development. Interesting 
works proposed before by Li et al about combining P300 and 
motor imagery [27] as well as combining SSVEP and P300 
[4] present good sources of inspiration for developing and 
testing new multimodal BCI case studies. Along these lines, 
it would be undoubtedly important to investigate the combi-
nation of ErrP and EMG as has been recently proposed by 
DelPreto et al in their novel work [60].

6.3. Conclusion

This paper presents and thoroughly describes gumpy, a novel 
toolbox suitable for hybrid brain computer interfaces. The 
overarching aim of gumpy is to provide a libre BCI software, 
which includes a wide range of functions for processing and 
decoding of EEG and EMG signals as well as classification 
methods with both traditional machine learning and deep 
learning techniques. The offline usage of gumpy is demon-
strated with two different showcase examples. Firstly, gumpy 

is used to decode two motor imagery movements using a 
publicly available EEG 2b dataset from the BCI competition 
IV. Different feature extraction and classification methods 
have also been implemented and tested. Importantly, the 
obtained results using the gumpy CNN algorithm showed 
some improvement compared to obtained state-of-the art 
results on the same dataset. Furthermore, gumpy is also used 
to decode different grasp poses from our recorded gumpy 
signals. Additionally, we show gumpy’s real-time capabili-
ties within a successful robot arm control using SSVEP sig-
nals and a prosthetic hand control using sEMG. Last, we 
provide a case study where gumpy can be used to perform 
online hybrid BCI experiments. Overall, there are promising 
future trends for its use in various BCI applications. With 
gumpy, we envision to pave the way for a new phase of open 
source BCI research.

 •  Supplementary video 1 about real-time robot arm 
control using SSVEP-based BCI: http://youtu.be/
Dm-GGcImKjY

 •  Supplementary video 2 about EEG signals decoding 
using CNNs: http://youtu.be/8hM7tOd7M7A

 •  Supplementary video 3 about prosthetic hand control 
using surface EMG signals: http://youtu.be/igOEXp-
wfBZA
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