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Grid cells of the rodent entorhinal cortex are essential for spatial navi-
gation. Although their function is commonly believed to be either path
integration or localization, the origin or purpose of their hexagonal fir-
ing fields remains disputed. Here they are proposed to arise as an opti-
mal encoding of transitions in sequences. First, storage requirements for
transitions in general episodic sequences are examined using proposi-
tional logic and graph theory. Subsequently, transitions in complete met-
ric spaces are considered under the assumption of an ideal sampling of
an input space. It is shown that memory capacity of neurons that have
to encode multiple feasible spatial transitions is maximized by a hexag-
onal pattern. Grid cells are proposed to encode spatial transitions in spa-
tiotemporal sequences, with the entorhinal-hippocampal loop forming a
multitransition system.

1 Introduction

Decades of research unearthed neurons that represent spatial information.
For instance, place cells (PCs) encode mostly singular locations (O’Keefe
& Dostrovsky, 1971; O’Keefe, 1979), head direction cells (HDs) show
preferential tuning toward head directions (Chen, Lin, Green, Barnes, &
McNaughton, 1994; Ranck, 1984; Preston-Ferrer, Coletta, Frey, & Burgalossi,
2016), and grid cells (GCs) fire at hexagonally arranged locations of an envi-
ronment (Hafting, Fyhn, Molden, Moser, & Moser, 2005). Together, they are
thought to form a cognitive map (Fyhn, Solstad, & Hafting, 2008; Moser,
Kropff, & Moser, 2008), anticipated by Edward Tolman as early as 1948
(Tolman, 1948).

GCs, stellate cells of the entorhinal cortex, are believed to convey criti-
cal metric information during spatial navigation (Fyhn et al., 2008; Moser
& Moser, 2008). It was discovered recently that their fields of activity with
respect to the environment, called grid fields, are not only hexagonally dis-
tributed but also that the sizes of grid fields vary in discrete steps (Stensola,
Stensola, Froland, Moser, & Moser, 2012). GCs are typically characterized
by their firing field sizes, orientation, and shift of the hexagonal pattern
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relative to an arbitrary coordinate system. Cells that share the same orienta-
tion and field sizes are denoted as belonging to the same grid module. Close
to the peak of the hierarchical organization of the cortex, they are considered
to be an ideal vehicle to understand abstract cortical representations (Moser
et al., 2014). However, the origin and purpose of the hexagonal fields and
discrete scales are still insufficiently understood and controversial. While
several models propose recurrent dynamics as the origin for the arrange-
ment (Fuhs & Touretzky, 2006; Burak & Fiete, 2009; Couey et al., 2013),
others use integration of oscillations to form hexagonal fields (Burgess,
Barry, & O’Keefe, 2007). Yet others suggest that the fields form due to
spatially modulated afferents and as a result of a self-organization pro-
cess (Gorchetchnikov & Grossberg, 2007; Kropff & Treves, 2008; Stepanyuk,
2015). Extended overviews of such models can be found in Giocomo, Moser,
and Moser (2011); Zilli (2012) and Shipston-Sharman, Solanka, and Nolan
(2016).

Most researchers assume that GCs perform one of two functions, al-
though both have subtle, yet significant, issues. First, their hexagonal pat-
tern was reported to be suitable for path integration (Burak & Fiete, 2009)
and even provide an error-correction mechanism (Sreenivasan & Fiete,
2011). Real-world experiments showed that such models quickly accumu-
late noise and require external resetting (Mulas, Waniek, & Conradt, 2016),
though. Second, theoretical studies showed that GCs grossly outperform
PCs during localization when the location is decoded using Bayesian in-
ference (Mathis, Herz, & Stemmler, 2012; Stemmler, Mathis, & Herz, 2015).
However, PCs are known to play an essential role during localization and
navigation (Morris, Garrud, Rawlins, & O’Keefe, 1982). It remains unclear
why there should be two subsystems for localization—GCs and PCs—
especially given that neural networks are energetically expensive (Niven
& Laughlin, 2008). In either of the two cases, researchers are in disagree-
ment about how downstream neurons should resolve the ambiguities that
are due to the hexagonally repeating pattern. Many models use integration
of multiple scales to form PCs (Solstad, Moser, & Einevoll, 2006) and sim-
ply add more scales to resolve said ambiguities. This does not appear to be
a reasonable or generalizable solution to the issue, as it merely shifts the
problem out of sight. Finally, most researchers neglect temporal aspects of
spatial information, although the hippocampal formation (HF) is crucial for
episodic memories (Scoville & Milner, 1957).

This letter is the first of a series to address these concerns. The series
introduces a novel computational model suggesting that the entorhinal-
hippocampal loop optimally stores and retrieves spatiotemporal sequences.
In particular, the series suggests that GCs encode multiple spatial tran-
sitions of such sequences and investigates facets of the proposal either
theoretically or using simulations. A schematic illustration of the pro-
posed model is presented in Figure 1, and a description of its functional
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levels is given in section 3. This letter introduces multitransition encod-
ing with mathematical rigor and is concerned with hexagonal grid fields.
Specifically, it focuses on the optimality of the hexagonal arrangement, not
on learning these fields. Nonetheless, a recurrent network model is pro-
posed to discuss how the theoretical results could be implemented biolog-
ically plausibly and to act as an outlook to the remainder of the series. The
papers that follow will present a scale-space model that solves a behavioral
issue of transition systems ideally when the scale increment between con-
secutive grid scales is

√
2, introduce and evaluate the biologically plausible

model that self-organizes and learns grid modules based on dendritic com-
putation, and use reinforcement learning (RF) to select an ideal trajectory
in a behavioral model that is based on scale-space encodings of transitions.

2 Related Work

Long known to be essential for its formation and storage (Scoville &
Milner, 1957), the HF was studied extensively in the context of episodic
memories (Tulving, 1972; Jarrard, 1993; Buzsaki, 2015), as well as spatial in-
formation processing (O’Keefe & Dostrovsky, 1971; Morris et al., 1982; Haft-
ing et al., 2005). Recently several studies have addressed sequence learning
or transition encoding. They examined transitions and the stability of se-
quences during the formation of temporal memories in spiking neural net-
works (Hayashi & Igarashi, 2009; Hattori & Kobayashi, 2016) and proposed
sophisticated models for the acquisition of episodic memories and the in-
teraction of subareas within the HF (Cheng, 2013). Others proposed that
spatial transition encoders are particularly useful during path planning
operations and presented a biologically plausible model that was evalu-
ated using a robotic platform in real-world scenarios (Cuperlier, Laroque,
Gaussier, & Quoy, 2004; Cuperlier, Quoy, Giovannangeli, Gaussier, &
Laroque, 2006). Later, this model was extended to select optimal trajecto-
ries from a number of candidate solutions using RF (Hirel, Gaussier, Quoy,
& Banquet, 2010). However, none of these studies examined the optimality
of transition encodings.

While many models use the integration of ego motion for the forma-
tion of hexagonal grid fields (Zilli, 2012), some researchers suggest that
their origin lies in afferents from spatially modulated inputs. For instance,
rate adaption was used successfully for the stable formation of hexagonal
grid fields using PC-like presynaptic activity in Euclidean space (Kropff &
Treves, 2008). Others used dendritic computation to cover a spatially mod-
ulated input space hexagonally and self-organization principles to arrange
several GCs coherently to form proper grid modules (Kerdels & Peters,
2013). Unfortunately none of these studies addressed the concerns already
mentioned.
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3 Episodic Memories and Multitransition Systems

A recent study observed preplay of PCs to nearby target locations while an-
imals were at rest (Pfeiffer & Foster, 2013). Presumably some form of mental
travel or route selection, this sparked the following motivating idea. When
navigating to a destination, an animal travels along a trajectory of inter-
mediate places. To plan its trajectory, it requires accumulated knowledge
about such locations, evidently memorized and processed in PCs (O’Keefe
& Dostrovsky, 1971; Moser, Rowland, & Moser, 2015). However, and at least
equally important, it needs insight into feasible (spatial) movements be-
tween them. In the basic case of minimizing distances toward targets, the
animal also requires knowing approximately how far apart the places are.
Without any a priori knowledge about this information, the animal needs
to sample its surrounding and learn the relationship between places and,
later, during recall, infer these distances using the accumulated data. The
acquisition of such data may have happened during an exploration phase
and should have happened in some optimal, but also general, manner to
apply to arbitrary environments.

3.1 Model and Methods. The novel computational model to solve this
task is depicted in Figure 1. It proposes that the entorhinal-hippocampal
loop forms an interacting hierarchy of computations with the purpose of
optimally storing and retrieving spatiotemporal sequences. Inputs (black
arrows) from a suitable sensor space (e.g., boundary vector information,
bottom row) or other spatially modulated neurons directly project to PCs
that learn to represent locations and rewards (second row; receptive fields
indicated as blue circles). Furthermore, movements or transitions between
locations are memorized and retrieved in two different layers of the hierar-
chy. One computational layer (top row) records episodic memories of actu-
ally performed sequences—for instance, that they can be replayed in order.
Another layer (third row) learns the relationship between spatially close
locations. While learning temporal adjacency is supposed to require only
interactions between PCs and transition encoders (arrows between top and
second layers), acquiring knowledge about spatial transitions requires pro-
jections from the sensory representation as well as afferents from the PC
layer to bind the appropriate spatially close PCs (arrows from bottom row
to third and arrows between the second and third rows).

The remainder of this letter examines the logic and memory consump-
tion of transition storage in this model from a mathematical point of view.
The axiomatic system it introduces uses symbols to represent spatial lo-
cations and transitions to model movements from one symbol to another,
both well known in computer science from automata theory, labeled tran-
sition systems, or Markov processes. Note, however, that the sensory input
space (see the bottom row of Figure 1) is not explicitly modeled. In fact, any
location is assumed to induce a unique sensory representation. The
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Figure 1: Overview of the proposed model and functional levels of computa-
tion. PCs (second row) receive projections (black arrows) from a suitable sen-
sory space (bottom row), and other afferents, such as the prefrontal cortex (not
modeled). GCs (third row), learn spatial transitions between places based on
coactivity of spatial afferents and PCs and recurrent projections to PCs. In addi-
tion, episodic memories are stored in a separate computational layer that learns
temporal transitions (top row).

consequences as well as the plausibility of these abstractions and the sim-
plification of the input space are discussed in section 4.

The deliberately abstract notion that is used for the analysis that follows
allows treating goal-directed navigation as a particular instance of a general
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memorization task: formation of episodic memories. The results presum-
ably apply beyond spatial navigation or the entorhinal-hippocampal loop.
Furthermore, it enables reasoning about the algorithmic level of the compu-
tation independent of the physical realization. Throughout this letter, sev-
eral brief examples and discussions facilitate understanding the notation
and logical analysis, both of them inspired by communicating sequential
processes (CSP; Hoare, 1978), the analysis of time in distributed computing
systems (Lamport, 1978), and the analysis of causality in theoretical com-
puter science (Halpern, 2015).

3.2 Symbols, Alphabets, and Sequences. Consider an animal that
moves across three rooms. The trajectory of the animal can be described by
the sequence of symbols A, B,C . . . , each representing one room. The mean-
ing of a symbol is not predetermined, though; rather, it depends on the sys-
tem being analyzed. For instance, symbols could also represent the event of
perception of each corresponding room, particular views of a room or ob-
jects within a room, or other modalities as long as they are distinguishable.
Moreover, symbols can describe various other forms of sequences, such as
the production of a particular series of sounds or steps to perform a cer-
tain action. Although the examples in this letter use spatial navigation, the
formal system generalizes to other applications.

The entirety of symbols forms an alphabet and their consecutive order-
ing a sequence, both captured in the following:

Definition 1 (alphabet and sequence). An alphabet � is a finite set of symbols. A
sequence (or word) is an ordered tuple of symbols σi ∈ �, that is, (σ0, σ1, . . .) =
w ∈ �+, where + is the Kleene plus operator.

Thereby a trajectory of an animal is described by a sequence of symbols,
just as motivated in the introductory example. However, immediate repeti-
tion of a single symbol is disallowed, formally specified as follows:

Axion 1 (nonstationarity). A sequence is locally nonstationary if any two succes-
sive symbols σi and σi+1 are distinguishable, that is, σi �= σi+1.

This constraint is inspired by neural dynamics. Specifically, the refrac-
tory period of neurons prohibits a continuous representation of a state by a
single neuron during short timescales. Also, it is behaviorally relevant for
the generation of a sequence. Consider an animal that tries to reach a cer-
tain goal location under the pressure of a nearby predator; it needs to find
a sequence where symbols correspond to locations. If the animal were to
recall a sequence that contains repetitions of locations, it would likely come
to a halt at a repeated symbol and fall prey to the predator.

However, the axiom does not limit general capabilities. Two consecutive
but distinct symbols of a sequence can have the same associated meaning,
depending on the sequence that needs to be encoded. For instance, the per-
ception of a certain room or location within a room in the case of spatial
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navigation or a certain actuator state in the case of motor commands could
be encoded in two consecutive symbols. Generally the associated meaning
of a symbol is independent of the symbol itself.

Moreover, this constraint does not introduce explicit information about
real time or prevent repetition of a symbol within a sequence at a later point.
In fact, the axiom requires only that any two consecutive symbols are differ-
ent. Consider an animal that stays in a room for a longer period of time and
records its movement in terms of distinguishable locations. Without any ad-
ditional information or an extension to explicitly incorporate real time, the
recorded sequence contains only symbols of consecutive places that the an-
imal’s perceptual system can differentiate, regardless of when the change
happened.

The directional ordering of a sequence is expressed using the arrow nota-
tion →, which ignores time. In fact, the temporal order of evaluation needs
to be stated explicitly, as will be shown further below. Thereby, symbols and
transitions form propositions. Consider the example A → B, which means
that the symbol B causally follows after symbol A—in other words, if A is
true, it follows that B is also true. Conversely, if A is false, so is B. Hence
they form a chain of causality. In addition to →, the arrow � exists; for ex-
ample, A � C means that there exists a path from A to C that bridges n ≥ 0
intermediate symbols. The negations of the notation are �→ and ��. Finding
a path to a target requires the following constraint, though:

Axiom 2 (coherency). Let w = σi, i ∈ {0, . . . , N} be a sequence of N symbols. w
is coherent if and only if σi → σi+1,∀i ≤ N − 1.

Coherency is necessary for goal-direction navigation. Consider an ani-
mal that intends to travel to a remote target. In terms of the basic idea for
this letter, it has to plan a trajectory without any significant gaps. Other-
wise, it will get stuck or lost, and it may express undefined behavior or dis-
placement activity. When the animal is not navigating to a specific goal, it
is assumed that novel symbols are acquired for future planning operations
by explorative movements. The animal’s task is thus either to find a valid
sequence to its target or acquire more knowledge.

This is not to be confused with definitions of automata in computer sci-
ence. As defined above, a coherent sequence has symbols that determin-
istically follow one after the other. However, multiple sequences between
two symbols may exist at the same time or different sequences may be gen-
erated at different times. It is therefore possible to specify, for instance, a
nondeterministic automaton or Markov process that accepts or generates a
coherent sequence, respectively.

Definition 2 (validity). A sequence w is valid or acceptable if it is both nonsta-
tionary and coherent.

Using these notations and axioms, goal-directed navigation from a start
A to a goal C is a program that expands the path A � C into any valid
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sequence A → σ1 → · · · → σN−1 → C, if it exists. The next sections describe
how to expand a path, give several examples, and address the memory re-
quirements for storing transitions.

3.3 On Universal Multitransition Systems. The arrow notation speci-
fies relations between two symbols. Consider the transition A → B, which
can also be written as the tuple (A, B). The concept of transitions is well
known—for instance, from reinforcement learning (RL; Sutton & Barto,
1998 or computer science (Van Benthem & Bergstra, 1994; Thomas, 2006).
There, it is usually denoted as a transition function mapping one state to an-
other given a set of actions R—τ : � × R → � (Sutton & Barto, 1998). This
concept will now be extended to allow simultaneous encoding of multiple
feasible transitions. The motivation for the extension will be stated further
below.
Definition 3 (transition system, set, bundle, and point). A multitransition system
(MTS) M is the pair

M = (P (�),�) (3.1)

where P (�) is the power set of �. Set � ∈ P (�) is called a configuration of M.
All symbols σi ∈ � are considered to be true.

Set � is called a transition set and contains sets πi, called transition bundles. In
turn, a transition bundle πi is a set of transitions τ k

i : � → �, called kth transition
point of πi.

Indices will be dropped if they are clear from the context. In addition,
the following terminology and notation will be used:

1. A transition τ from A ∈ � to B ∈ � can be written (A, B) or (A → B).
2. τ = (A → B) is defined for A and leads to B, written A ≺ τ and τ 
 B,

respectively. The notation is transitive to bundles and sets: A ≺ π ⇔
∃τ ∈ π, A ≺ τ , and π 
 B ⇔ ∃τ ∈ π, τ 
 B, respectively.

3. A bundle π forms a tuple (S, T ) with start and target symbols S =
{σ |σ ≺ τ, τ ∈ π} and T = {σ |τ 
 σ, τ ∈ π}, respectively.

4. If a transition bundle πi is true, then so are all contained transitions
τ k

i ∈ πi.

Transitions form propositional terms that are independent of sym-
bols. Consider the symbol A and the transition (A → B)—both of them
propositions—in the expression A ∧ (A → B). If A is true, it can be deduced
logically that B is also true, written A ∧ (A → B) ⇒ B. Here, ∧ is the logical
and operator, and A forms a precondition for the transition (A → B). As A
is true, the precondition is met and so the transition is also true. Hence, B is
the conclusion of the entire term.

Since order of evaluation is not specified during logical deduction, se-
quential evaluation of transitions is made explicit as follows:
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Definition 4 (transition evaluation). A configuration � ∈ P (�) of an MTS M
is evaluated according to the functions

FM : �,� �→ ∪i fM(�,πi ∈ �), (3.2)

fM : �,π �→ {σl |σk ∈ �, σk ≺ π, σl is true in π}. (3.3)

The following section gives examples for transition evaluation using
these definitions and discusses how they can be implemented in principle
in a neural network.

3.4 Interpretations and Implementations of Universal MTS. An MTS
M can be interpreted as a state machine that allows multiple states to be
coactive, because the union in equation 3.2 goes over all transition bun-
dles contained in �. Hence, evaluation of a configuration yields a set of
symbols that are true given all symbols of that configuration. Moreover,
the function FM(�,�) allows recursive usage for evaluation until a tar-
get symbol is reached. Consider the following example with four symbols,
A, B,C, D, where A is the start and C the target. The initial configuration
of M is � = {A}. Furthermore, the following transition set, bundles, and
points are defined:

� = {π0 = {τ 0
0 , τ 1

0 }, π1 = {τ 0
1 , τ 1

1 }}, (3.4)

τ 0
0 = (A, B) τ 1

0 = (A, D), (3.5)

τ 0
1 = (B,C) τ 1

1 = (D,C). (3.6)

It requires two recursive evaluations until the target is found: C ∈
FM(FM(�,�),�). This is similar to the evaluation of transition functions
in RL (Sutton & Barto, 1998). However, the set notation allows the superpo-
sition of several symbols at the same time.

A visual depiction of the parallel evaluation and superposition of states
is presented in Figure 2. The figure shows a different, more complex exam-
ple and uses a directed graph to depict symbols and transitions. It shows
symbols as circular nodes, and transition bundles with a square shape. In
the figure, each symbol is associated with precisely one transition bundle,
which in turn leads to other symbols. Each such pair is highlighted with a
dashed box, and the reason for their pairwise occurrence will become evi-
dent in the next section. Given a starting symbol s, indicated as a black node
in the left-most panel of Figure 2, the transition evaluation as defined in
equation 3.2 allows multiple symbols to consecutively activate. This process
repeats recursively until the target symbol t is in the set of active symbols.
As illustrated in Figure 2, this yields a propagating wave of active symbols
toward the target symbol.

The example presented in Figure 2 resembles the parallel execution of
a breadth-first search in a directed graph and exposes a relationship to
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Figure 2: Recursive transition evaluation in a graph. Each symbol (circular
node) is associated with a transition bundle (square node), from which other
symbols can be reached. Given an initial symbol s (A), the transition evaluation
as defined in equation 3.2 activates all subsequent symbols simultaneously (B).
Repeatedly applied (C), this will ultimately activate the target symbol t (D) if
and only if there is a path from s to t. Essentially, this is a partial parallel breadth-
first search in a directed graph without the selection of a shortest path.

message-passing algorithms such as belief propagation in factor graphs.
Note that a specific sequence is neither selected in the figure, nor is such
a technique presented, as this would require some form of reward mech-
anism, which is beyond the scope of this letter. In principle, however, this
could be implemented with well-known algorithms such as Dijkstra’s al-
gorithm or the Bellman-Ford algorithm. The latter was used in Hirel et al.
(2010), who also proposed that the HF stores transitions and presented a
biologically plausible implementation thereof.

The visual example of Figure 2 helps to derive possible implementations
of transition encoding and evaluation, as each node can be interpreted as an
individual (artificial) neuron. Such an implementation requires at least the
following two modules: one associative memory M� , which stores sym-
bols, and another memory, M�, which acquires transitions between these
symbols, depicted in the left-most panel of Figure 3. Due to its task of ac-
tivating a symbol given excitatory afferents that are possibly corrupted by
noise and to maintain the activity of the activated symbol until a transition
occurs, a likely and biologically plausible implementation of M� is a neu-
ral autoassociative memory with winner-take-all (WTA) dynamics (Palm,
1980; Palm, Schwenker, Sommer, & Strey, 1993). In contrast, M� is required
to associate with consecutive symbols and therefore can be implemented
as a neural heteroassociative memory. Recent evidence is in favor of these
types of associative memories as existing in the HF (Cutsuridis & Wennek-
ers, 2009; Le Duigou, Simonnet, Telenczuk, Fricker, & Miles, 2014; Mishra,
Kim, Guzman, & Jonas, 2016).

The other panels of Figure 3 depict possible wiring diagrams of indi-
vidual neurons of the two memories M� and M�. Note that the diagrams
ignore any inhibitory interneurons, assume that each connection is sub-
ject to a temporal delay such as axonal transmission, and depict only a
few connections to reduce the complexity of the drawings. In each panel,
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Figure 3: Examples of possible neural implementation schematics for the uni-
versal MTS. (A) Memory M� stores symbols, whereas memory M� acquires
transitions between symbols. They can be implemented biologically plausibly
as auto- and heteroassociative memories, respectively. Direct coupling of indi-
vidual neurons of the two memories (B) appears less likely than indirect cou-
pling via a heterosynaptic connection (C) or interneuron (D), as it does not
capture that transition evaluation requires both the preceding symbol as well
as the transition to be true for a succeeding symbol to activate.

neurons of M� require local recurrent excitation to form an autoassociative
memory.

The schematics differ in the way the recurrent connectivity from M� to
M� is implemented. Direct coupling, as depicted in panel B, appears to be
unlikely as such a system would ignore the start of a transition. More likely
candidates are shown in panel C, which uses a heterosynaptic connectiv-
ity (indicated as two lines converging on a singular triangular endpoint),
or in panel D, which uses an interneuron to integrate the state of the sym-
bol for which a transition is defined as well as the transition. Recall that for
a succeeding symbol to activate, both the symbol for which a transition is
defined and the transition itself need to be logically true. Hence, the com-
putation performed by the heterosynaptic connectivity or the interneuron
is the logical and, which was used to evaluate transitions and symbols as
propositional terms in section 3.3. In a spiking neural network implemen-
tation, this would require the spike times of both symbol and transition
neurons to appear in a suitable temporal integration window to either fire
the interneuron or activate the next symbol using the heterosynaptic con-
nection. The study of necessary temporal dynamics as well as a concrete
implementation of such a network will be left for future work.

In the general case, receptive fields of neurons in M� depend on external
excitatory afferents and are subject to the meaning associated with sym-
bols. Neurons in M�, however, coactivate with neurons of M� and thus
inherit the receptive fields of M� . Consider the example where neurons of
M� represent places; that is, they form PCs. Their receptive fields are driven
by spatially modulated input and generate distinct place fields. Although
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neurons of M� do not receive spatially modulated input, they will express
place fields due to their coactivation with PCs of M� .

Networks of the form illustrated in Figure 3 have already been reported
in the literature, often to model the behavior of synfire chains (Abeles, 1991).
A particularly appealing network model thereof was presented in Wennek-
ers and Palm (2009), as it is not only structurally similar to the proposed
implementation depicted in panel A of the figure. It was also used to gen-
erate syntactic sequences.

One important question that needs to be answered is which of the de-
picted connectivity schemes appears in the HF. Le Duigou et al. (2014) ob-
served that local recurrent excitation of pyramidal cells in cornu ammonis
3 (CA3) is weak, whereas interneuron excitation appears to be quite effec-
tive. Hence, their finding is in favor of the implementation depicted in Fig-
ure 3D. Nevertheless, the variant depicted in Figure 3C is also possible, and
additional studies are required to further verify if, and if so, which type of
implementation is present in local microcircuits of the HF.

It also remains to investigate how many neurons are required to store
either symbols or, more important, transitions of a universal MTS. This is
the focus of the next section.

3.5 Encoding Capacity of the Universal MTS. The definition of π intro-
duced a bundling trick. Transition bundling provides several benefits when
analyzing the computational logic and storage requirements of an MTS, es-
pecially in the light of neural encodings. Consider the following thought
experiment. Suppose that the generation of a bundle (e.g., a neuron) is en-
ergetically expensive; however, the addition of a transition point (e.g., a
dendritic spine) to an existing bundle is comparably cheap. To avoid evo-
lutionary pressure (Niven & Laughlin, 2008), the goal is thus to minimize
the overall cost. This corresponds to maximizing the number of transition
points while minimizing the number of bundles. As will be shown now, it
is not possible to merge arbitrary transition points in one bundle without
violating the axioms already introduced.

Theorem 1. Let σ ∈ �, M an MTS on the alphabet �, � the corresponding tran-
sition set, and π = (S, T ) a transition bundle. M generates valid sequences if and
only if the following conditions hold:

1. σk ≺ π ⇒ π �
 σk,
2. π 
 σl ⇒ σl �≺ π .

The sets of symbols S, T for a π = (S, T ) must be mutually exclusive:
S ∩ T = ∅.

Proof. (1) From axiom 1, it follows immediately that any transition π that
is defined for σk and leads to σk violates the nonstationarity condition.
(2) Without loss of generality, consider the three symbols σ0, σ1, σ2 ∈ � and
σ0 → σ1 → σ2 but σ0 �→ σ2. This yields the transition points τ0 = (σ0, σ1) and
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τ1 = (σ1, σ2). Assume further that τ0 and τ1 are bundled in π and that σ0

and π are true. It follows that σ0 ∧ τ0 ⇒ σ1. However, σ1 ∧ τ1 ⇒ σ2 and thus
σ0 ∧ π ⇒ σ2. This contradicts the assumption and violates the coherency
constraint. �
Definition 5 (minimality, universality). An MTS M is minimal if there exists
only one πi for any σk: σk ≺ πi ⇒ σk �≺ π j for any j �= i. In a universal M, any
arbitrary transition between two symbols σk, σl is possible.

Corollary 1. The input set Si of a transition bundle πi is singleton for a minimal
and universal M.

Proof. σk ≺ πi and πi 
 σl,∀ l �= k. According to theorem 1, σl �≺ πi,

∀ l �= k. �
Corollary 2. Let � be an alphabet of size M and � a transition set of N transition
bundles πi = {Si, Ti} for a minimal universal M in which a transition between any
two symbols is feasible. Then M = N.

The corollary can be proved by reduction to the graph-coloring prob-
lem. In this problem, each node of a graph is assigned a color such that no
two neighboring nodes share the same color (Cormen, Leiserson, Rivest, &
Stein, 2009). The number of required colors is called the chromatic number
of the graph.

Proof. Construct the graph G of M in which each transition is represented
by a node and any symbol by a directed edge. G is a complete digraph; that
is, each pair of nodes is connected by a pair of directed edges. By merging
any such pair of directed edges, G can be reduced to a simple complete
graph.

According to theorem 1, Si ∩ Ti = ∅ for any πi. Therefore, only those tran-
sitions can be bundled that are not connected by an edge in G. The number
of independent nodes in G is equivalent to the chromatic number of the
graph, which is equal to the number of nodes in a complete graph (Cormen
et al., 2009). �

Figure 4B shows an example of a transition graph of a sequence of four
symbols after reduction to the simple complete graph. Each edge is an-
notated with two symbols—the symbols by which the transition can be
reached in the complete digraph.

3.6 Multitransition Systems in Euclidean Space. The space that is con-
structed by symbols δi and transitions τ j above is the discrete topological
space with the induced discrete metric. However, the world in which ani-
mals reside is not discrete, and, more important, arbitrary jumps between
any two locations are infeasible. In particular, the perceived environment
is a complete metric space, the Euclidean. For brevity this will simply be
called metric space from now on. Hence, an MTS L that encodes transitions
in a metric space has different constraints than a universal MTS M does.
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Figure 4: Sequence and transition graph example. (A) A sequence of five con-
secutive symbols σ1, . . . , σ5. The transitions τ1, . . . , τ4 can be bundled into π1

and π2 without violating any constraints. (B) The reduced transition graph for a
fully connected universal MTS is a simple, complete graph, here shown for four
transitions and four symbols.

Encoding transitions between locations in a metric space depends on the
detection of two consecutive positions. The following analysis is based on
the assumption that there exists a continuous signal that depends on and
uniquely identifies each possible location of the animal. In terms of the Eu-
clidean space M, this corresponds to locations x ∈ M. Certainly an animal
does not have access to coordinates; however, other stimuli are likely to
provide the necessary information. For instance, geometrical information
combined with head direction signals is sufficient to represent singular loca-
tions, as demonstrated in the boundary vector (BV) cell model (Barry et al.,
2006).

According to definition 1, an alphabet is finite. This can be understood
to correspond to a finite number of neurons that have to represent loca-
tions. However, the alphabet 	 of spatial symbols δi has to represent the
continuous signals x of the input space M. Clearly, this corresponds to the
well-known sampling theorem.

Definition 6 (spatial symbol, enablement, and assignment). Let δi ∈ 	 be spatial
symbols according to a sampling process of a complete metric space D = (M, d).
Each δi is centered at a xi ∈ M.

A point p ∈ M enables δi if it is within the support of δi given by the open ball
Bi,s of radius rs: Bi,s = {p ∈ M|d(xi, p) < rs}.

The point p is assigned to the closest δi: δi for which d(xi, p) is minimal. Given
two adjacent symbols δi, δ j , then rw = ||d(xi, x j )||/2, describing a ball Bi,w of
radius rw.

The definitions of enablement and assignment can be interpreted in the
following way. The region in which a spatial symbol is enabled can be un-
derstood as its receptive field. In contrast, assignment identifies the closest
symbol—for instance, as a result of a WTA mechanism. Due to the defi-
nition, spatial symbols are allowed to have overlapping receptive fields.
Nevertheless, a single symbol is representative for any location, and transi-
tions can be detected and learned when the winning symbol changes. Before
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examining the optimal distribution of spatial transition bundles, it is neces-
sary to determine the placement of symbols.

According to the Petersen-Middleton theorem (Petersen & Middleton,
1962), the ideal sampling strategy for two-dimensional continuous signals
and therefore placement of spatial symbols δi is a hexagonal arrangement.
From a different point of view, the sampling process can be understood as
a solution to the problem of packing spheres with diameter rw as densely
as possible. The sphere-packing problem also yields a hexagonal lattice in
the two-dimensional case (Conway, Sloane, & Bannai, 1987; Leech & Sloane,
1999).

Given such an ideal sampling process for spatial symbols, the optimal
distribution of spatial transition bundles follows immediately.

Theorem 2. Let D = (M, d) be a Euclidean space. Let L = (P (	), 
) be a mini-
mal transition system on D such that the countably finite alphabet 	 corresponds
to the densest optimal covering with respect to rw:

1. The number of transition bundles γi ∈ 
 is constant.
2. The occurrence of any transition bundle γi is periodic.

The theorem is proved by its corresponding graph-coloring problem,
which was introduced above.

Proof. The densest arrangement of spatial symbols according to the
Petersen-Middleton theorem is a hexagonal lattice (Petersen & Middleton,
1962). Furthermore, transitions between symbols are possible only between
adjacent symbols. Consequently, the corresponding transition graph is not
complete; only neighboring transitions are connected. Due to the hexagonal
arrangement of symbols, the chromatic number of the resulting graph is 3,
and the occurrence of colors is periodic. �

The following section presents distributions of symbols in environments
that are commonly used during rodent experiments and suggests a neural
implementation for the dendritic computation.

3.7 An Online Method for Dense Packing of Spatial Symbols. Pack-
ing spheres into confined Euclidean spaces is a well-studied problem for
which several algorithms exist (see Hifi & M’Hallah, 2009, for an overview).
In most cases, however, a global optimization process is used to find the
optimal packing. The optimal arrangement of symbols in two-dimensional
(open) space according to the Petersen-Middleton theorem is depicted in
Figure 5A. In addition, Figure 5B shows one solution of the graph-coloring
problem applied to the symbols of Figure 5A. The occurrence of transition
bundles follows the arrangement of spatial symbols and is hexagonally dis-
tributed as well as periodic in the optimal case.

An animal, however, does not appear to have access to global informa-
tion or a global optimization procedure a priori. In contrast, a (near) optimal
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Figure 5: Densest spatial sampling and spatial transition example. (A) The opti-
mal distribution of symbols is a hexagonal arrangement in the two-dimensional
case (Petersen & Middleton, 1962). The example shows only undirected edges
that represent bidirectional transitions for visibility. (B) The corresponding opti-
mal distribution of transition bundles follows the distribution of symbols. How-
ever, bundles can be repeated periodically in a hexagonal fashion. Edges were
omitted to improve clarity.

distribution of spatial symbols needs to be established while the animal is
actively exploring an environment.

The behavior of spatial symbols was modeled and simulated as an
N-body system with a moving agent as follows.1 Based on definition 6,
a spatial symbol was assumed to have circular extents and is centered at
its preferred stimulus. Moreover, definition 6 specifies that there is a min-
imal distance between any two spatial symbols. Consequently, the follow-
ing local interactions between symbols were used to achieve dense packing.
When the simulated agent was at a certain location, the Euclidean distance
between the agent and each symbol was evaluated. If there was no sym-
bol within a minimal distance dmin to the agent (i.e., there was no sampling
center that represented the current location appropriately), a novel symbol
was generated and centered at the location. If, however, there was at least
one symbol within dmin, these symbols interacted in the following manner.
The closest symbol was moved toward the current location of the agent,
while each symbol that was closer than dmin to any other symbol and not
the winning symbol itself was pushed away slightly from the other symbol.
In addition, symbols that were farther away from dmin but within a distance
dmax to another symbol were attracted to the other symbol. Finally, the new
position pnew of a symbol was determined by exponentially decaying its old
position pold and applying all symbol interactions:

pforce = pold + αvpull − 5.0αvpush, (3.7)

pnew = βpold + (1 − β )pforce, (3.8)

1
Source code available at https://github.com/rochus/symbolsampler.
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Figure 6: Evolution of dense packing of spatial sampling centers in an N-body
simulation of interacting symbols. A simulated agent explored several environ-
ments and generated novel sampling centers when necessary. The centers inter-
acted in the way that centers that were too close repelled each other, whereas
longer distances allowed mutual attraction. Over time (left to right, arbitrary
temporal units), the hexagonality of the arrangement increased while fractures
started to vanish.

where vpush and vpull are the combined forces that repel or attract the symbol,
respectively, and α = 0.02 and β = 0.8 arbitrarily chosen.

Figure 6 shows results of the N-body simulation to distribute sampling
centers in several environments at different times after the simulations were
started. In all simulations, dmin = 0.2, dmax = 0.4, and the environments
were confined to be within [−1, 1]2. Moreover, the movement statistics of
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the agent were similar to those of real rodents: the movement speed was
drawn from a gamma distribution, while the movement direction was se-
lected from the current direction in combination with a Laplace distribution.
However, details about the statistics were found not to be relevant for the
presented results. The displayed temporal unit was chosen arbitrarily and
does not reflect any real time. The figure shows that over time, the centers
stabilize and increase the hexagonal symmetry and thereby also remove
fractures within the arrangement (e.g., see lower part of the square envi-
ronment at T = 10, 000 and compare to T = 20, 000). Note in particular the
arrangement of centers in the square environment. The wall offset is repro-
ducible in every simulation and increases the number of symbols packed
within the environment. A similar wall-offset behavior was reported for
real GCs by Stensola, Stensola, Moser, and Moser (2015), who attributed
the effect to an increase of asymmetry with respect to the environment.

4 Discussion

A novel axiomatic system was used to investigate transition encoding in ar-
bitrary and spatially confined sequences. Moreover, possible neural imple-
mentations were presented, and simulations showed how spatial symbols
optimally arrange in two-dimensional environments.

Although the model was presented in the context of spatial navigation,
the results of both the universal MTS and the spatial MTS are general and
possibly apply to other representations. In particular, any system in which
transitions in arbitrary spaces need to be encoded suffer from the results
obtained for the universal MTS. Systems in which the input can be mapped
to a Euclidean space and where transitions should be bundled optimally
express behavior like the spatial MTS. Observations of GCs in other brain
regions that process sequences are therefore expected.

In the following, the benefits of hexagonal packings and reasons, as well
as implications for a separation of the representation, will be discussed.
First, however, the results of the N-body simulation will be used to derive
a neural model for a spatial MTS, which will then be integrated with one of
the proposed computational models for a universal MTS of Figure 3.

4.1 Proposed Neural Model of Spatiotemporal Sequence Encoding.
Although not a biologically plausible neural network, the results of the
N-body simulation can be used to guide the design of a suitable neuron
model. Note that the system dynamics of the model that I propose will be
described and evaluated in detail only in a following paper in the series.
Nevertheless, it is included here to show how a neural network in principle
can implement an MTS for spatiotemporal sequences.

Recall the functional levels of the model presented in Figure 1 and de-
scribed in section 3, where it was suggested that GCs learn transitions in
spatiotemporal sequences and bind the appropriate PCs that are spatially
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nearby. In other words, GCs need to learn about spatial relationships given
suitable sensory information and convey this information to PCs to which
they are recurrently connected. This not only learns spatial transitions but
also decouples PCs from explicit information about spatial relationships.
This latter point is particularly beneficial during recall and is discussed in
section 4.4. To perform this task, GCs are proposed to learn a dense packing
of spatial symbols in a suitable sensory space as part of their dendritic com-
putation during exploration of an environment. Specifically, assume that
GCs express multiple receptive fields that behave the same as the symbols
of the N-body simulation with only a minor extension: the receptive fields
represent transition information based on dense packing of symbols.

What do these receptive fields look like, and how can the dendritic com-
putation self-organize appropriately and biologically plausibly within both
a single cell and a network of GCs?

The proposed dendritic organization of a single GC is depicted in Fig-
ure 7A. It shows that individual branches of the dendritic tree of a GC ex-
press their own receptive fields. Moreover, receptive fields need to express
certain dynamics to accommodate the requirements of transition encoding.
Given a starting location, a transition bundle is not allowed to associate with
other symbols in the immediate surrounding. On-center and off-surround
dynamics, for example, in the form of a Mexican hat function, appear to be
a straightforward solution where the on-center corresponds to the receptive
field of the symbol for which the transition is defined and the off-surround
region captures any possible symbol in the immediate neighborhood of that
symbol. This means that given the sensory representation for a certain lo-
cation, a GC that expresses a certain grid field needs to dissociate from sen-
sory representations for locations that are in the immediate neighborhood.
How can this form without supervision, considering the complex temporal
dynamics of neurons? Most neurons, and in particular neurons that rep-
resent sensory information, express bell-shaped tuning curves (Jazayeri &
Movshon, 2006; Butts & Goldman, 2006). Therefore, their spike times vary
relative to their preferred stimulus. Dissociation of GCs from nearby spa-
tial locations can thus be achieved based on relative spike times of GCs and
sensory neurons, and suitable spike-timing-dependent plasticity (STDP). In
other words, a GC that encodes the start of a transition will have fired before
the spikes of neurons that encode for nearby states arrive. Hence, synaptic
weights between such states and the GC will be depressed. An idealized
illustration of this process is depicted Figure 8A. The figure shows tuning
curves of several optimally arranged sensory neurons in the bottom row,
possible spike times of the neurons given that the animal is at the preferred
location of one sensory neuron. In addition, an inlay shows an asymmetric
STDP tuning curve. A gray background indicates the temporal integration
window for association.

Local recurrent connectivity with on-center and off-surround regions
is common within continuous attractor neural network (CAN) models of
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Figure 7: Proposed computational model for a GC and interactions with PCs.
(A) The dendritic tree of a GC is formed by organizing on-center and off-
surround receptive fields such that they closely pack transitional information
based on a suitable sensory space. The on-center regions correspond to sym-
bols for which transition bundles are defined, whereas the off-center regions
are target areas where transitions lead to. (B) To minimize the number of GCs
(colored circles), they are required to express a WTA mechanism, which can be
implemented using exclusively inhibitory recurrent collateral. Moreover, they
are recurrently connected to PCs (bottom row of black circles). Episodic mem-
ories are stored in episodic transition bundles (top row of black circles), and
interneurons (filled gray circles) compute the logical and operation that is neces-
sary for transition evaluation.

GCs (Burak & Fiete, 2009; Shipston-Sharman et al., 2016). In particular, a
recently published model found that precisely the proposed form of local
center-surround interactions leads to stable formation of grid fields (We-
ber & Sprekeler, 2018). In contrast to these models, however, the purpose of
GCs is suggested not to be localization or integration of distances. Rather,
a single neuron is suggested to encode as many transitions as efficiently as
possible. Hence, a network of GCs assigned this task also needs to adhere
to the constraints of MTS.

The local microcircuit of GCs needs to establish WTA dynamics to mini-
mize the number of transition bundles and reduce the ambiguities of tran-
sitions. Fast local recurrent inhibition appears to be an ideal solution, as it
avoids computational complexities and, in particular, temporal delays that
would be the consequence of mechanisms that compare firing rates. Also,
it is likely to align the responses of a network of GCs. Local inhibition is
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Figure 8: Receptive field formation and transition interpretation. (A) On-center
and off-surround receptive fields may occur due to an asymmetric STDP win-
dow (small inlay). Sensory neurons (bottom row, one-dimensional bell-shaped
tuning curves) that prefer the current location will spike early (middle row,
shaded area of vertical spike plot) and before a postsynaptic spike, whereas
neurons for nearby locations will arrive only after (middle row, white area of
spike plot). The expected results are on-center and off-surround receptive fields
(top row, illustrated for a two-dimensional receptive field). (B) Circular recep-
tive fields for spatial transition bundles inform about the target area to which
an animal can move with constant cost (orange arrows). Consecutive transitions
can be used to form a sequence (gray receptive fields).

well supported by the findings of Couey et al. (2013), who found that the
predominant interaction within the entorhinal cortex (EC) is via inhibitory
interneurons.

Finally, GCs are suggested to interact with PCs similar to the way they do
with episodic transition neurons. The proposed model with all local inter-
actions is presented in Figure 7B, which uses interneurons to compute the
logical and operations that are necessary during evaluation of transitions.

4.2 Requirements and Predictions for Neurons and Dendritic Trees.
Following corollary 2, an implementation of a universal minimal M re-
quires as many entities to store transition bundles as it has symbols. Due to
the dependence on their associated symbols during learning or expansion
of a path, transition neurons inherently coactivate with their symbols. This
is also visible from the proposed neural model depicted in Figure 3. While
symbols receive external afferents, transition encoders only receive feedfor-
ward drive from and recurrently project back to symbols. Hence, this could
provide an explanation for the two types of PCs found in regions cornu
ammonis 1 (CA1) and CA3: one population of PCs acts as spatial symbols,
whereas the other encodes temporal transitions. A qualitative change to one
population is therefore immediately reflected in the other. This could poten-
tially lead to novel insights into PC remapping (Colgin et al., 2008; Solstad,
Yousif, & Sejnowski, 2014), or when and how it is induced. In addition, the
difference between place remapping and grid realignment (Fyhn, Hafting,
Treves, Moser, & Moser, 2007) is expected to be a result of their indepen-
dent input sampling processes and the suggested abstraction layer that GCs
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provide. Due to the proposed separation of temporal and spatial transitions,
place remapping, and thus recall of a different set of temporal sequences,
can be performed independent of remapping spatial transitions.

To decorrelate from their target symbols (i.e., to fulfill theorem 1), tran-
sition neurons require individual receptive fields per branch and com-
plex dendritic computations. Several recent studies believe that neurons
can express this form of sophistication. For instance, dendritic spines were
found to express individual structural plasticity (Bosch & Hayashi, 2012),
as well as local synaptic plasticity (Segal, 2005; Cichon & Gan, 2015; Weber
et al., 2016). Furthermore, dendrites were found to be capable of encoding
multiple sensory stimuli (Varga, Jia, Sakmann, & Konnerth, 2011). In com-
bination with the complex intrinsic organization of the EC (Canto, Wouter-
lood, & Witter, 2008; Witter, Doan, Jacobsen, Nilssen, & Ohara, 2017), it
appears likely that GCs perform multiple distinct computations in and self-
organization of their dendritic tree corresponding to the proposed multiple
receptive fields for transition encoding. So far, it is unclear if the ideal sam-
pling that is the basis of the proposed self-organization should also be re-
flected in the activity of PCs. If this were the case, PCs should express peak
activities that are distributed hexagonally in the absence of other spatial
cues.

The model assumes that sensory afferents from BV and HD cells lead to
unique sensory representations from which spatial symbols were sampled.
Therefore, these cell types directly influence the formation of symbols. In
fact, sampling symbols from a sensory space that is spanned by BV and HD
cells could explain the findings by Derdikman et al. (2009). They reported
that GCs repeat their grid fields in every other corridor of a hairpin maze.
The common features in every other corridor are the movement direction in
which the animal was running, as well as the HD-dependent geometry of
the corridor. Moreover, this could explain the results presented by Krupic,
Bauza, Burton, Barry, and O’Keefe (2015) and Krupic, Bauza, Burton, and
O’Keefe (2016), who discovered that the geometry of an environment influ-
ences the responses of GCs. It is important to note that because the N-body
simulation sampled directly from Euclidean coordinates and not from a BV-
HD-space, it did not yield any deformations or displacements of fields.

Although the optimality results for MTS were obtained for packing
symbols and not entire transition encoders, the results apply to GCs in
the following way. The on-center and off-surround receptive fields are
ideally circular in spaces that provide unique sensory stimuli due to the
Peterson-Middleton theorem. Therefore, their densest packing also follows
the sphere packing problem. Furthermore, each part of the proposed neu-
ral model (i.e., individual dendrites and the entire neuron) corresponds to
entities of MTS (i.e., transitions and bundles). Consequently, the optimality
results are believed to be transitive to the proposed neuron model. How-
ever, care must be taken with respect to the finite capabilities of a dendritic
tree, the sensory afferents, and the discretization of space.
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4.3 Discrete spaces, Hexagons, and Sphere Packings. Using symbols
in MTS discretizes the input space. Moreover, transitions were assumed
to be binary above, that is, indicate only if a transition exists. However,
it is conjectured that the obtained optimality results and the Peterson-
Middleton theorem still apply even if symbols are not discrete and tran-
sitions are associated with a transition probability. Concretely, assume that
symbols are represented by bell-shaped tuning curves, similar to optimal
representations found in neural networks (Jazayeri & Movshon, 2006; Butts
& Goldman, 2006). If these curves are well chosen, the activities of symbol
neurons correspond to probabilities. In combination with transition prob-
abilities, this is expected to result in definitions of MTS that are similar, if
not identical, to Markov chains or message-passing algorithms. The latter
is particularly evident in Figure 2, which shows a bipartite graph of sym-
bols and transitions precisely in the way that factor graphs are commonly
depicted and used in probabilistic graphical models (Kschischang, Frey, &
Loeliger, 2006). Given symbol and transition probabilities, transition eval-
uation is thus expected to resemble belief propagation. To conclude this ar-
gument, it appears to be feasible to extend the presented discrete MTS to
probabilistic MTS.

Anotable feature of (discrete) spatial MTS is the minimal number of three
transition bundles for continuous spaces. It is important to note that this
applies only in the mathematical treatment, where a transition bundle may
contain arbitrarily many transition points and symbols perfectly discretize
the input space. Furthermore, this would require a perfect WTA mechanism
to select the appropriate transition bundle. Instantaneous local inhibition is,
however, highly unlikely in a real neural network. It is therefore expected
that the amount of overlap between grid fields depends on the temporal de-
lay until local recurrent inhibition acts, which is determined by the synaptic
strength between spatial afferents to GCs and the mechanism of inhibition.
Moreover, a real neuron is limited in the number of dendrites and synapses,
is subject to noisy afferents, and can therefore realistically cover only a frac-
tion of an entire input space. This leads to two important observations.

First, it is expected that the number of GCs found in the rodent EC de-
pends on the dendritic capabilities and the size of their grid fields, and it
follows a law that tries to cover the typical habitual space of a rat. Without
exact numbers on available synapses and how the recurrent connectivity
with PCs is implemented, it is difficult to predict numbers of expected GCs.
Nonetheless, an assessment of expected numbers is presented in section 4.4.

Second, continued exploration of an environment is expected to increase
the synaptic strength between presynaptic sensory information and GCs.
Consequently, grid fields may be fuzzy and their overlap larger in the be-
ginning of an exploration phase due to uncertainties encoded by low synap-
tic strengths. Given sufficient exploration and suitable plasticity, synaptic
strengths will increase. In turn, this should reduce the time to spike of GCs
and, consequently, the latency of local recurrent inhibition. It is therefore
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predicted that grid fields separate more strongly over time due to faster
local inhibition.

An intimately related question to the previous observations is why it is
beneficial to encode multiple transitions within a single neuron instead of
encoding each transition separately. First, neurons are energetically expen-
sive (Niven & Laughlin, 2008). Minimizing their number appears to be a
likely optimization problem that is solved by the brain in an effort to re-
duce energy consumption. Second, learning transitions requires plasticity
suitable for timescales of spatial exploration. Although adult neurogenesis
is reported for the hippocampus (Zhao, Deng, & Gage, 2008), only spike-
based plasticity rules operate on timescales applicable to spatial navigation
and exploration. Consider an animal that explored an environment once
and now needs to trace its original trajectory back home. Because the time
between exploration and retrieval may be only a few minutes apart, the
entire process needs to rely on fast short-term memory. Third, and finally,
transition bundles require less physical space. Knowledge of a feasible tran-
sition is little more than just a bit of information. If each transition required
a separate neuron, the number of required neurons would explode. This is
especially true for the universal MTS, where, given N symbols, the system
would require N2 transition neurons. It is also true, however, for a spatial
MTS. Ideally, it would require only 6 transition neurons per symbol. Con-
sider, however, the N-body simulation for the square maze of 2 m × 2 m
and symbols of size 20 cm. The converged solution consists of 115 symbols
and would require about 690 transition neurons. Extrapolating from these
numbers to an area of the size 100 m × 100 m, which is well below roaming
areas of rats (Harper & Rutherford, 2016), this would require 1,725,000 tran-
sition neurons. Bundling transitions reduces this number significantly. As
mentioned above, the true number of required transition bundles is difficult
to assess due to missing numbers for the synapse count.

Another important point to address is why dense hexagonal packing
of receptive fields is beneficial for spatial navigation or spatiotemporal se-
quences in general. Consider the information that is encoded in circular
receptive fields for transition encoding. It provides information about con-
stant cost operations to interact with surrounding states. This is depicted
in Figure 8B for the case of spatial navigation. The figure depicts that given
its current location, a transition informs about the surrounding neighbor-
hood with which the animal can interact directly (i.e., with constant cost
because distances are uniform in all directions). This drastically simplifies
algorithms that work on such data, as they do not have to consider corner
cases or distinguish between certain configurations of symbols.

To make this argument concrete, consider an animal that explored an
environment and wishes to find its way back home. Ignoring any other re-
ward signals, the animal wants to plan the shortest trajectory to minimize
energy consumption. On a flat surface, a basic task for the animal is thus
to approximately compute distances between two arbitrary locations. To be
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useful, however, the mechanism needs to work in any environment with-
out a priori knowledge. Because symbols are circular and densely packed,
an algorithm that operates on these data can expect that any two neigh-
boring symbols are equidistant in sensory space. Conclusively, there is no
mechanism required to distinguish between different neighboring symbols
or to align symbols to the surrounding world. The observed alignment and
shearing effects of grid fields with respect to the geometry of environments
as reported in Stensola et al. (2015), Krupic, Bauza, Burton, Barry, et al.
(2015) and Krupic, Bauza, Burton, & O’Keefe (2016) are, in fact, considered
to be an artifact of densely packing spherical receptive fields in a suitable
sensor space.

Now consider a different animal for which the packing is not hexagonal
but, for instance, a square lattice. The fundamental difference is that the lat-
tice loses the constant neighborhood property, and a transition would not
inform about an area that is equidistant in any direction. This is because
points across a diagonal of the square lattice are farther away than others.
Any algorithm now also needs to know how to reach other symbols de-
pending on their position on the lattice, for instance, via vertex or via edge.
Again, this is a result of the nonconstant neighborhood. Finally, it is unclear
to which external frame of reference the lattice should be aligned, if at all.
Essentially, lattices other than the hexagonal introduce avoidable complex-
ities for spherical receptive fields.

Conclusively, dense packing allows learning information about an envi-
ronment in a general bottom-up fashion without a priori knowledge and
without having to deal with corner cases. Later, this information can be
used in top-down algorithms. It is also likely that the information that was
acquired in this bottom-up fashion is used, for instance, to prune unneces-
sary information and learn abstractions during a later stage.

One may wonder if there are other representations that could be used
to represent space. For instance, previous work showed how PCs can be
used to triangulate exact localizations and how the hippocampus forms a
topological map (Dabaghian, Memoli, Frank, & Carlsson, 2012; Dabaghian,
Brandt, & Frank, 2014). Still, this method requires a process that learns dis-
tances or relations of points in the topological map. An alternative represen-
tation is to use the fewest neurons to encode the largest volume of space.
This, as well as the previous encoding scheme, would require a distinct de-
coding mechanism to infer the exact location. An efficient implementation
of either approach could use rank-order codes similar to the ones proposed
for the visual cortex (Thorpe & Gautrais, 1998), that is, the relative time
of spikes of PCs informs about the exact location. This decoding mecha-
nism limits the distance between locations that can be represented, though,
because temporal integration windows for decoding neurons are not
arbitrarily long. Furthermore, it would require knowledge about distances
to properly tune the spike times a priori. Another decoding scheme could
infer the location based on rate coding. Spatial navigation, however, is an
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operation that requires fast execution times—on the order of a fraction of a
second—for instance, when finding the shortest path toward a safe location
while at the risk of a predator. Encoding transitions explicitly reduces the re-
trieval time to a bounded factor between neighboring locations (i.e., the ax-
onal transmission time) and yields acceptable times for short and medium
distances. In addition, it provides the necessary information about spatial
relationships for topological representations without having to deal with
the geometry of the environment explicitly. Nevertheless, recursive expan-
sion is an issue for long trajectories and will be addressed in the following
paper of the series, which introduces a technique to optimally accelerate
retrievals in MTS.

4.4 On the Separation of Spatial and Transitional Information.
Sequence and transition learning in the HF was suggested previously
(Hayashi & Igarashi, 2009; Hattori & Kobayashi, 2016). However, these
studies ignored spatial information or GCs. Furthermore, spatial transitions
were the focus of other studies with biologically plausible models of the
HF (Cuperlier et al., 2004, 2006; Hirel et al., 2010). Nevertheless, these mod-
els did not differentiate between spatial and temporal transition systems,
sequences were not defined rigorously, and optimality of transition encod-
ing was not their concern.

Why, though, should there be a distinction between spatial and transi-
tional information in the first place? Several observations are in favor for
this. First, numerous failed (and thus unreported) experiments using spik-
ing neuron models indicated that it is difficult to construct a network with
only a single neuron population that is capable of both maintaining activity
of a representation infinitely but also toggling state transitions arbitrarily.
The necessary parameters for a stable network were biologically highly un-
likely, especially when neurons were realistically noisy.

Second, the dendritic tree of a PC is certainly not infinite. Thus, the in-
tegration of presynaptic afferents is limited by the number of synapses.
Given that PCs integrate a plethora of cues, for instance olfactory infor-
mation (Zhang & Manahan-Vaughan, 2015), receive projections from the
entorhinal cortex (Witter, 2007; Witter et al., 2017), and are directly or indi-
rectly coupled with the pre frontal cortex (PFC) (Swanson & Kohler, 1986;
Jay & Witter, 1991; Varela, Kumar, Yang, & Wilson, 2014; Ito, 2018), it seems
unlikely that there are sufficiently many synapses left to also encode transi-
tions. Certainly the number of synapses is also limited for GCs. In turn, this
limitation allows estimating the number of expected GCs depending on the
size of their grid fields. Because the number of reported synapses per neu-
ron varies significantly in the literature, the following estimate should be
taken with due care. Consider a neuron that has 15,000 synapses, a number
on the lower bound of reported synapses for pyramidal neurons in rats (De-
Felipe, Alonso-Nanclares, & Arellano, 2002; Markham & Greenough, 2004).
Furthermore, assume that not every synapse associates with presynaptic
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sensory states, but also, for instance, to recurrent projections from place
cells and other neurons in the local microcircuit, and that more than a sin-
gle synapse is required to drive the neuron to its spiking threshold. In the
following estimate, it is therefore assumed that only one-fifth of the total
synaptic capacity contributes to learning transitions. Hence, a single neu-
ron can bind to up to 3000 individual presynaptic symbols. Now consider
the N-body simulation, which packed 115 symbols with a diameter of 20
cm into the square maze, which extrapolates to 287,500 symbols for an area
of size 100 m × 100 m. Despite the number of symbols, this requires only 96
neurons that perform transition bundling, which is several orders of magni-
tude smaller than the 1,725,000 neurons to store each transition individually.
Clearly, the estimate lacks knowledge about other properties of presynap-
tic neurons, such as bursting behavior, which could trigger a postsynaptic
spike with fewer synapses, about how many different states the entirety of
presynaptic neurons can represent, or if the reportedly rich dendritic orga-
nization of cells in layer II of the EC (Lingenhohl & Finch, 1991) exhibits a
significantly larger number of synapses. Still, numbers of expected transi-
tion neurons are an the order of a few hundred or, at most, a few thousand
for realistic or even large environments, which not only suits the number of
pyramidal and stellate cells found in the EC, but also that only a few of these
cells express grid-like behavior (Gatome, Slomianka, Lipp, & Amrein, 2010).
Moreover, the dependency of the number of neurons on the size of their
fields could explain the small number of GCs with large grid fields (Sten-
sola et al., 2012).

Third, the architecture of the HF appears to be a combination of auto- and
hetero-associative memories (McNaughton & Morris, 1987; Káli & Dayan,
2000; Papp, Witter, & Treves, 2007; Le Duigou et al., 2014). While the first
type can be used to maintain and recall memories even from noise inputs
(Palm, 1980), the latter is ideal to store state transitions. In fact, a combina-
tion of the two was already used to learn sequences via Hebbian plasticity
(Wennekers & Palm, 2009).

Fourth, a separation increases fault tolerance and provides computa-
tional benefits. If a transition neuron vanishes, the spatial knowledge is re-
tained and vice versa. Furthermore, both PCs and GCs are suggested to in-
dependently acquire their representations due to afferents, which carry spa-
tial information as depicted in Figure 7B. As discussed above, while PCs are
thought to learn to identify singular locations for both temporal and spatial
purposes and thus directly correspond to both temporal and spatial sym-
bols, GCs are believed to not only associate with their presynaptic spatial
afferents. Moreover, they associate with coactive PCs. This has the bene-
fit that GCs learn transitions not only in their spatial input space but also
in the symbolic space established by PCs. When operating with reduced
presynaptic inputs (e.g., in total darkness), the accumulated errors in the
GC representation are expected to be reset using strong presynaptic stim-
uli that override the afferents from PCs, similar to the realignment model
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proposed by Mulas et al. (2016). Due to this proposed coactivity learning,
sensory activation in presynaptic neurons is not required during recall and
path planning, as it only requires recursive activation of GCs and PCs. An-
other benefit of separating spatial and transitional representations is that
they can vary independently from each other. This form of abstraction layer
is widely used in computer science due to its power and known as the
bridge or mediator pattern (Gamma, 1995). More important, though, this
predicts two distinct modes of operation: learning and recall. During learn-
ing, GCs require sufficient drive from PCs as well as afferents from up-
stream neurons that represent spatial information. During recall, they can
rely only on activation from PCs. Conclusively, GCs or the local microcircuit
within the EC are expected to expose a mechanism to toggle their mode be-
tween either state. I expect these states to be represented heterosynaptically
as logical and or logical or operations, respectively, both of which can be im-
plemented easily in neural networks (Koch, 2004) or via interneurons. Early
data suggest that GCs indeed expose at least these two modes of operation
(R.G. Morris, private communication, October 6, 2016).

Fifth, and finally, PCs mature earlier during postnatal development than
GCs do (Langston et al., 2010; Wills, Cacucci, Burgess, & O’Keefe, 2010).
The data suggest that GCs appear as soon as rats start exploring the space
around them. This clearly indicates that they perform computations that
are relevant only after places can be identified. In particular, temporal se-
quences, stored in a universal minimalM, are considered to be behaviorally
more important than spatial sequences to preweanling rats.

4.5 Current Limitations and Possible Extensions. The introduced MTS
restricts the behavioral capabilities of animals. In its current form, an ani-
mal equipped with a system similar to the one presented in Figure 7 can
exactly recall only previously explored trajectories. The reason is that ap-
propriate places need to be visited consecutively to learn transitions, and
any additional transition cannot be acquired without another exploration
phase. Furthermore, the system cannot find any shortcuts between places
that are beyond the distance of two spatial symbols. For instance, assume
that an animal walks on a U-formed trajectory in an environment without
any walls, where the start and target locations are at the start and the end
of the U, respectively. If the two locations are too far apart, the system is
unable to recognize that there is a shortcut between the two locations and
merely follows the episodic memory. One solution is to use probabilistic
symbols and transitions instead of discretized spaces. Then there may be
certain nonzero activity of symbols that are far away, depending on the
tails of the probability distribution. This may also lead to the discovery of
some shortcuts and more realistic trajectories than the exact succession of
discrete symbols. Another solution to this problem is to introduce transi-
tion encoders that can recognize places over longer distances. This solution
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solves another issue with transition systems—questionable run-times when
evaluating trajectories. It, as well as the extension to probabilistic represen-
tations, will be presented in detail in the following paper in the series.

Another shortcoming is the assumption of a process that uniquely identi-
fies any location. However, this simplification allowed assessing transition
encoding theoretically in an idealized case without considering precise neu-
ral dynamics and will be extended to more realistic input spaces in the fu-
ture. In particular, the model presented in Barry et al. (2006) already showed
that BVs cells contain sufficient information to uniquely encode spatial lo-
cations. The evaluated environments were mostly of size and shape that
are similar to real-world experiments: square or circular with no or only
few obstacles. A spatial sampling process that is inherent in dendritic com-
putations of GCs suggests that their fields depend on the uniqueness of
the perceived stimuli, though. Recent studies that showed that GC firing
strongly depends on the geometry of the environment are clearly in favor
of this assumption (Krupic et al., 2015, 2016).

5 Conclusion and Outlook

This letter proposed that GCs optimally encode transitions in Euclidean
space. For this purpose, an axiomatic system was introduced to examine
the logic and memory consumption of transition encoding in sequences.
Furthermore, a novel bundling trick was presented that allows analysis of
entities that are capable of encoding multiple transitions at the same time.
Finally, the results of the theoretical derivation were discussed in detail,
shortcomings of the analysis were addressed, and future work was pointed
out. For instance, transition bundling was argued to be performed by den-
dritic computation and local spatial sampling. In turn, this allowed making
predictions and explaining several recent observations of real GCs.

This letter is part of a series that proposes transition coding as the core
functionality of GCs. The following work will address multiple scales of
transitions and demonstrate why a scale increment of

√
2 is optimal and

present a biologically plausible model of dendritic self-organization for
transition bundling.
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