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Data Structures for Locally Distributed Routing
Nicolai Waniek∗, Student Member, IEEE , Edvarts Berzs, and Jörg Conradt, Senior Member, IEEE

Abstract—Routing and path finding are fundamental for databases as well as information networks. The classical algorithm to compute
shortest paths is Dijkstra’s algorithm, which is highly suited when the computation is performed sequentially and access to global
knowledge is granted. However, without significant workarounds the computational overhead is infeasible if large quantities of data have
to be distributed across several hosts. When the data is represented in the form of a graph, many researchers suggest to distribute data
according to a clustering that is based on global edge information.
In this paper we propose to take inspiration from neurobiology. Namely we are motivated by spatial navigation in the rodent hippocampus,
and cluster nodes by assigning each node a spatial coordinate which is independent of edge weights. Furthermore, similar to other work,
we suggest to apply hierarchical contraction on this data with location-based clustering.
The focus of the presented work is not to develop methods that run faster than state-of-the-art techniques, but analyze and characterize
algorithms and data structures that we think are simpler to distribute. Results demonstrate that our approach is feasible for many practical
data sets and it admits a simple approach to parallelize path and distance queries.

F

1 INTRODUCTION

SHORTEST path computation and routing are essential
parts in many advanced technological systems. Uncon-

sciously we use these kinds of algorithms on a daily basis, for
instance when searching for the shortest path on a planned
road trip. Hence it does not come as a surprise that, over
the last few decades, many scientists have contributed to
the optimization of the runtime and memory complexity
of such algorithms, thereby significantly reducing retrieval
times for shortest path queries in large knowledge and
information systems. Databases, navigation systems, intelli-
gent transportation systems, or computer networks, to name
just a few areas, benefit from their findings. Furthermore,
recent developments have provided significant speed ups of
relevant algorithms for global road-networks [1], [2], [3], [4],
[5], [6].

Another area that benefits from improved routing al-
gorithms is robotics: autonomous agents that operate in
an unmapped environment have to solve the problem of
simultaneous localization and mapping (SLAM, e.g. [7], [8],
[9], [10], [11]), which accumulates tremendous amounts of
spatial knowledge over time. However, they should not only
map an environment and compute their own location, but
eventually be able to find a shortest path to a location of
interest. This scenario can easily be extended to multiple
robots in several ways. For instance, robots can cooperatively
map an environment and build a common database of spatial
knowledge [12], [13], [14]. Here we present work towards
another idea: distributing the shortest path computation onto
multiple participating agents.

1.1 Related Work
The most fundamental algorithm for finding arbitrary short-
est paths in graphs with edges E, vertices V , and non-

Manuscript created November 18, 2016. This work was supported by EU FET
project GRIDMAP 600725. The first two authors contributed equally. Asterisk
indicates corresponding author.
N. Waniek, E. Berzs, and J. Conradt are with the Neuroscientific System Theory
Group (NST), Technical University Munich, Arcisstraße 21, 80333 Munich,
Germany. (e-mail: nicolai.waniek@tum.de).

negative weights is Dijkstra’s algorithm. Currently, the best
runtime complexity of O((|E|+ |V | log |V |) can be achieved
by an implementation with Fibonacci heaps. In practice,
however, such a complexity can pose issues for shortest path
queries on huge graphs with millions of nodes and edges.
Additionally and, for our work more importantly, Dijkstra’s
algorithm does not natively support parallel execution except
for it’s bi-directional version in which computations start at
source and target node simultaneously.

Many heuristic graph preprocessing techniques are
known that aim at speeding up the shortest path queries.
These can be classified in goal-directed and hierarchical
methods [5], [15], [16], [17], [18]. The goal-directed methods
mostly rely on the input graph to represent Euclidean
distances between the nodes, more specifically, most goal-
directed methods rely on some geometric characteristics
of the graph, like triangle inequality or spatial locality.
Hierarchical methods, however, do not in general require
such limitations on the input graph and were thus inspiration
for our work.

Sophisticated methods for hierarchical clustering of data
to speed up shortest path computations include Hierarchical
Encoded Path Views (HEPV, [19], [20]), High Performance
Multi-Level Routing, or HiTi [21], to name just a few. Yet
another approach to optimize computational times is shown
in [22], which extends multi-level graphs to incorporate
knowledge about transit times in road networks. Similar to
the approach in [18], it benefits mainly from precomputing
the all-pair shortest distances of some vertices that have been
identified to be important. The consequence is a speed-up
of the retrieval time at the cost of storing the additional
information of the all-pair shortest path information. A more
recent development is presented in [23], which suggests to
recursively build a tree by partitioning the input graph into
sub-graphs. Transition information from one sub-graph to
the next is subsequently stored alongside the tree in form of
transition matrices. The resulting data structure, dubbed G-
Tree, supports efficient shortest path and k-nearest neighbor
(kNN) queries.
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Most if not all of the hierarchical methods mentioned
so far benefit drastically from specialized ways in which
the input graph is partitioned. For a general overview of
hierarchical methods, we refer to [24], [25]. For recent
advances in graph partitioning we refer to the excellent
survey presented in [26].

1.2 Motivation and Biological Inspiration

The methods presented above often require global knowl-
edge during the preprocessing steps, for instance to achieve
an optimal or at least near-optimal graph partition, or
detailed knowledge about individual vertices in the graph.
Although they achieve remarkable speed-ups in computation
time, they don’t lend themselves easily to distribution across
a huge number of hosts that can participate in the computa-
tion. As hardware and network infrastructure continues to
become smaller and cheaper we see this as a major drawback.
As a consequence, we looked at natural systems that process
spatial information in parallel and distributed as a source of
inspiration.

The discoveries of place and grid cells in the rodent
Hippocampal Formation and Entorhinal Cortex were a
significant step towards understanding the principles be-
hind spatial navigation ind animals. In short, grid cells, a
specific type of neuron [27], are assumed to present a metric
coordinate space computed from ego-motion information
and geometrical cues of the environment [28], [29], [30]. On
the other hand, place cells represent individual locations,
may store additional trajectory information, and presumably
link each place to its grid cell code. The assembly of all place
cells can thus be thought to represent a topological graph
of places and trajectories with assigned edge weights in a
possibly non-metric space, whereas the grid cell assembly
uniquely identifies single locations in a metric space with
high accuracy [31], [32]. Following this, the brain conveys the
impression that metric information of individual locations
(vertex position) is separated from transition information
(edge weights). Another remarkable curiosity is that grid
cell responses appear in several discrete scales [33], which
provably leads to optimal coding and representation of the
input space [31], [32], [34]. The basic principles of grid cells
were successfully tested in or used for robotic scenarios
involving navigation and mapping [11], [35], [36], [37].

In search of a simple data distribution scheme we asked
if it is feasible to use a hierarchical structure which lends its
characteristics from grid cells. This means that the cell size
ratio between two neighboring hierarchy levels is constant
over the whole hierarchy. Furthermore, each hierarchy level
should be split into several clusters or cells which cover
possibly overlapping areas of input, and we seek to increase
sparseness from lower to higher levels. The approach should
ignore peculiarities about specific vertices and treat all input
equally. Here we present our results towards a data structure
that we see suitable for this task and which will allow us to
easily distribute the data onto several hosts, while retaining
high efficiency for computing shortest paths.

Our work is significantly different from existing ap-
proaches, because our technique to distribute data is inde-
pendent of edge weights between nodes and treats all nodes
alike. In the work presented here we augment nodes with

spatial coordinates. We are aware that data association and
coordinate generation are a major issue in many applications,
especially robotics. Nevertheless we introduce coordinates
to examine our proof of principle. Overall, our approach can
be seen as a mixture of goal-directed as well as hierarchical
methods. Additionally, unlike many other approaches that
admit near-optimal solutions, we are only interested in
optimal shortest paths, that is, we search only such paths
between source and target nodes for which no shorter path
exists. Because of the spatial coordinates, we can efficiently
assign each node to a cluster, regardless of the shape of
the graph of which the node is a part. This provides a
way to easily distribute the nodes and compute shortest
paths in parallel, which will be important for future work:
we conjecture that our method will allow for efficient
computation in a locally distributed setting, where each
cluster can be assigned to a different host.

2 PRELIMINARY DEFINITIONS AND REQUIRE-
MENTS

In this section we formally define a Sparse Layered Graph
(SLG) structure according to our method and introduce
further definitions, requirements, and possible constraints.
We will use the same symbols as in the definitions throughout
the algorithm specifications. We build upon the work of
and try to stay as close as possible to the definitions given
in [5], [16], [23], [25], nevertheless we include all required
definitions for the sake of completeness.

If not specified otherwise, | · | will denote the cardinality
of a set. To distinguish between elements of a single layer
and elements between layers, we will keep layer indices in
subscripts and all others in superscripts. For instance, vji ∈ V
is the j-th element of V at the i-th layer.

2.1 Single layer definitions
Definition 1. Let G = (V,E) be an undirected planar graph,
where V is the set of vertices and E the set of edges E = {e(u, v) :
there exists an edge between u, v ∈ V }. Each edge e(u, v) ∈ E
is associated with a weight denoted as w(u, v) ≥ 0. Furthermore
each node v ∈ V is associated with a coordinate x(v) ∈ R2, where
all coordinates x(v) are assumed to be uniformly distributed in the
coordinate space R2.

A typical real-world occurrence of such a setup is road
maps, where each place can be identified by a unique world
coordinate and edge weights w(u, v) represent the time to
travel from u to v [16]. For the material presented here we
assume that we have a method available to uniquely assign a
coordinate x(v) to any vertex v. We will use the terms vertex
and node interchangeably.

Definition 2. Let G = (V,E) be a graph as defined above. We
define a covering C of G as a collection of subsets

C = {cj ⊆ V : j ∈ J} ,

such that
V =

⋃
j∈J

cj ,

where J = {1, 2, . . . , N} is an index set and N = |C|. In
addition, each subset cj is accompanied by a coordinate ζj =
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Figure 1. Graph, Cells, and Border Nodes. An input graph (left hand
side, small circles and connections) is covered by a set of cells (orange
hexagons); we extract all border nodes from these cells for further use in
the Transition Graph (right hand side, filled small circles).

ζ(cj) ∈ R2, called it’s cell center, in concordance to the coordinates
x(v) defined above.

In other words, each vertex v ∈ V is contained in at least
one subset cj , as depicted in Figure 1. In contrast to graph
partitions that are frequently used in other work, it is not
guaranteed that cj ∩ ck = ∅, ∀cj , ck ∈ C. We use the terms
cell and cluster for cj interchangeably, and usually omit the
super-script j if readability can be increased and j can be
inferred from context.

Note that the cell center ζj not necessarily is the center of
mass of the contained vertices v ∈ cj . In fact, and without
loss of generality, we use centers ζj such that all cell centers
form a hexagonal tesselation of V as shown on the left
hand side of Figure 1. However, other distributions of cell
centers are possible, e.g. a non-uniform Voronoi Tesselation,
but these are omitted as they do not yield significant new
insights. In the majority of cases, the problem of finding the
optimal graph partitioning is at least NP-Hard [38] and thus
for large data sets it is feasible to search for suboptimal graph
partitions, especially since in most cases slight deviations
from the optimum do not severely impair the performance
of any algorithms that are applied to this partition.

To accelerate shortest path queries, we introduce an
additional data structure called Transition Graph that only
considers nodes v ∈ B, where B is a border node set.

Definition 3. A border node set B = {vb : vb ∈ V } ⊆ V is the
set of nodes ub, vb for which the following holds:

∃j, k ∈ J, j 6= k,∃e(ub, vb) ∈ E : (ub ∈ cj) ∧ (vb ∈ ck)

Bc = {vb : vb ∈ c} is the border node set of cell c. For
simplicity we identify Bj := Bcj for the border node set of
cell cj . Furthermore we denote with

F = {e(u, v) : u, v ∈ B ∧ e(u, v) ∈ E}

the set of all edges between pairs of border nodes.

Hence the set B captures all nodes that indicate transi-
tions from one cell to another. Or in other words, each node
that has an edge leaving its cell will be considered a border
node. The right hand side of Figure 1 shows a visualization
of the border nodes, where each node that belongs to Bc is
shaded in blue.

2.2 Multi-layer graph

We can now easily extend the fundamental definitions above
to expand to multiple layers by adding an index i which
denotes the i-th layer. The indices form a strict total order
I = (0, . . . , i, . . . , L − 1), where L is the number of layers.
For instance, Gi = (Vi, Ei) describes the graph Gi of the
i-th layer, which has vertex set Vi and edge set Ei. On the
other hand, cji is the j-th cluster in layer i. Finally, we need
to distinguish between two different graphs on layer i: the
graphs induced by the Sparse Layer Graph and Transition
Graph construction described below are denoted by Si and
Ti, respectively. Their node and edge sets are (V S

i , E
S
i ) and

(V T
i , ET

i ).
We note the following properties and observations that

we will use throughout the algorithm descriptions and
complexity analysis below:

• The maximum ratio of nodes that are contracted to
total number of nodes in previous layer

αi =
|V contracted

i |
|Vi−1|

∀i ∈ I \ 0

• Similarly, the ratio of cells between two consecutive
layers is denoted as

γi =
Ni

Ni−1
∀i ∈ I \ 0

• If i < j, then |Vi| ≤ |Vj |. However, there is no such
relation between |Ei| and |Ej |

• The number of cells in the lowest layer NC
0 is a

parameter that can be chosen freely. Based on our
experiments, a reasonable choice is NC

0 =
√
|V |.

• The ratio of border nodes to all nodes in the layer i is

βi =
|Bi|
|Vi|
∀i ∈ I

• The ratio of number of nodes in Ti to number of
nodes in Si:

λi =
|V T

i |
|V S

i |

3 CONSTRUCTION ALGORITHMS

Using the definitions and symbols from above, we can now
proceed to the description of the iterative method of building
the Sparse Layered Graph S from an input graph G as
defined in Definition1, presented in Algorithm 1.

3.1 Sparse Layered Graph Construction

The Sparse Layered Graph (SLG) contains a total of L layers,
which are numbered consecutively as (0, . . . , L − 1), and
each layer Si consists of a covering Ci.

Definition 4. We define a Sparse Layered Graph S as

S =
⋃
i∈I

Si , Si =
⋃
j∈J

Sj
i ,

where Si represents the sparse layered graph structure in layer i,
which itself is a cover of all subgraphs induced by the covering Ci.
Consequently, Sj

i := Scj

i is the subgraph induced by cell cji .
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Figure 2. Edge Contraction. The contraction process removes a certain
number of nodes with minimum degree within each cell and inserts
new edges between the remaining nodes (indicated in green) where
necessary. As a consequence the number of nodes in the layer is reduced,
whereas the number of edges may increase depending on the structure
of the input graph G.

S0 consists of a covering of the original graph G, accord-
ing to Definition 2. Each of the following j = 1, . . . , L − 1
layers is constructed by taking the set of remaining nodes
and edges from the previous layer j − 1, assigning these to
the cells cji with centers ζji of the new layer j, and finally
performing a node contraction step to prune the graph. A
visualization of the contraction process is given in Figure 2,
and of the SLG and its construction in Figure 3.

Definition 5. A node v is said to be contracted in the current
layer, if the following conditions hold

1) v is removed from the current layer
2) all edges with an end-point in v are removed
3) all neighbors u,w of v are directly connected with each

other by novel edges. The weights of these new edges
are calculated according to d(u,w)contracted = d(u, v) +
d(v, w). If the edge (u,w) ∈ Ei and if d(u,w)contracted <
d(u,w), then we will flag this edge as contracted and store
only d(u,w)contracted. During path querying, we will have
to expand contracted edges.

We note that the contraction of nodes within a cell can be
performed independently of and thus in parallel to other cells
on the current layer. The effect of the node contraction for
one cell is shown in Figure 2. Thus, this step of the algorithm
can be easily parallelized. However, since each layer depends
on the result from previous layers (see Figure 3), the layers
cannot be processed in parallel and have to be handled in a
serial manner. Note, that, by construction, each consecutive
layer will have at most as many nodes as the lower layers,
and in most cases strictly less nodes than previous layers.

3.2 Transition Graph Construction
Once a layer Si is generated, its Transition Graph (TG) Ti

can be derived from it. Formally, T =
⋃

i∈I Ti, where each
Ti consists of the TGs of all cells cji , namely Ti =

⋃
j∈J Tj

i .
The TG construction algorithm 2 builds an additional sparse
graph structure for each layer Si. Unlike the SLG construc-
tion algorithm, each layer can be handled simultaneously,
thus admitting parallel execution.

Initially, all edges that have their head and tail nodes in
different cells are extracted (see Definition 3 and Figure 1).
Then, each cell is processed separately by considering only
the nodes in the respective cell. For all such nodes belonging
to a certain cell, the All-Pairs Shortest Path (APSP) distances

Figure 3. Sparse Layered Graph and Layer Construction. The SLG
S consists of several layers Si (three layers shown here), each layer
inducing its own subgraph. Additionally, each layer Si consists of many
cells cji with their own subgraph Sj

i . The first (bottom) layer is formed by
covering the input Graph G with a certain number of cells (gray hexagons,
bottom row). Every following layer is constructed by taking all nodes and
edges from the previous layer, assigning the nodes to their corresponding
cells (orange hexagons, middle row) and performing edge contraction in
each cell (green edges, compare to the input layer). The next layer (top
row) receives the remaining nodes and edges as input and operates on
cells with a fixed size increment (blue hexagons).

Figure 4. Transition Graph Construction. The Transition Graph for the
graph presented in Figure 1 (left hand side) is constructed by selecting
only the border nodes of each cell, and adding the all-pair shortest path
information within each cell (red lines on right hand side) if necessary.

are calculated and edges with weights corresponding to
the APSP results are added to the Transition Graph. With
this method we acquire a graph with considerably reduced
number of nodes compared to Sparse Layered Graph. The
algorithm is presented in Algorithm 2 and depicted in Figure
4.

4 QUERIES

At the moment, our data structures support two kinds of
queries: getShortestDistance(s,t) and getShortestPath(s,t), which
return the shortest distance and shortest path between source
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Algorithm 1 Generation of the Sparse Layered Graph
Initialize: i = 1,S0 = G
for all v ∈ V S

0 do . clustering on layer 0
Assign each v to closest cell cj

end for
while i ≤ L− 1 do . construction of layers i > 0

Si = Si−1
for all v ∈ V S

i do . clustering on layer i
Assign each v to closest cell cj

end for
for all cj , j ∈ J do . node contraction in each cell

for all contractable nodes v with deg(v) ≥ 2 do
for all neighbor pairs (u,w) of v do

dcontracted ← d(u, v) + d(v, w)
if (u,w) ∈ ES

i ∧ dcontracted < d(u,w) then
d(u,w)← dcontracted

flag edge (u,w) as contracted
else if (u,w) /∈ ES

i then
add new edge (u,w) to Si

d(u,w)← dcontracted

flag edge (u,w) as contracted
end if
remove v from Si

mark all neighbors of v as non-contractable
end for

end for
end for
i← i+ 1

end while

Algorithm 2 Generation of the Transition Graph
for all i ∈ I do

Initialize: Ti ← (Bi, Fi) . see Definition 3
for all cells cj , j ∈ J do . all-pair shortest-path

Initialize: Tj
i ← (∅, ∅)

for all u, v ∈ Bj
i do

w(u, v)← min d(u,w) in Sj
i

Tj
i = Tj

i ∪ e(u, v) . insert (new) edge
flag edge e(u, v) as an APSP-edge

end for
Ti = Ti ∪Tj

i

end for
end for

node s and target node t, respectively. Their shorthand
notation is getDist and getPath. In practice with serial
execution, the shortest distance can be found approximately
twice as fast as the shortest path. This fact has some practical
advantages, for example, in path planning: often we are
interested in the length of a path between a source node
and some points of interest, whereas the exact path is of
secondary or later interest.

4.1 Shortest Distance Query
The getDist algorithm presented in Algorithm 3 first finds
the lowest level Sk in S, where the source and target nodes
are both present, i.e. where they are not contracted. Tk is
used as a subgraph and the graphs from source and target
cells in Sk are appended to it. Then, the shortest path from

s to t in this temporary graph is calculated. Due to the
construction of S and T it is guaranteed that this path has the
same distance as the full path from s to t in the input graph
G. Note that this calculation is done on a single machine at
the moment and is thus performed sequentially. For obvious
reasons, operating in layer k is unlikely to be optimal in
all cases. For instance, if both nodes are contracted on the
lowest layer, all operations will take place on this layer.
The suggested algorithm is only to demonstrate proof-of-
principle as it allows performance improvements at several
spots.

Algorithm 3 Shortest distance query: getDist
Input source and target nodes s, t ∈ V
Output dist - length of shortest path between s and t
k ← lowest common level of s and t
[cs, ct]← cells on level k which include s and t
Q = Tk ∪ Sk

cs ∪ Sk
ct . merge sub-graphs

P ← shortest path in Q . for instance with Dijkstra
return |P |

4.2 Shortest Path Query
Path retrieval with getPath is very similar to getDist, in
fact first step is identical: we find the shortest path from s
to t in the temporary Graph Q constructed during distance
computation. However due to the construction of T, the
path that we acquire may not yet include all vertices of
the shortest path in G. Resolving the partial path to get the
full shortest path in G is presented in Algorithm 4 and an
example is shown in Figure 5.

We note that the shortest path from s to t in Sk will
necessarily include all vertices on the corresponding path in
Q, and in fact in the same order. More precisely, an ordered
set of vertices from the shortest path from s to t in Sk is a
superset of the ordered set of vertices on the shortest path
in Q. Furthermore, the set of vertices on a shortest path in a
layer j < k is a superset of the vertices on layer k due to the
sparsification during the node contraction.

We can now follow the shortest path in Q and resolve
it to the final path in G. This process can be seen to consist
of two phases depends on the type of edge which was
determined during construction of SLG and TG. An edge on
the shortest path in Q for a specific layer k can be one of
three types: a regular edge, a contracted edge, or an APSP
edge. Considering APSP edges, we know that they were
added during the TG construction, hence we can simply
query the SLG cells that maintain the head and tail of such
edges (in parallel) to retrieve the shortest edge-expansion.
Applied to all APSP edges, the process yields a shortest path
P k on layer k with only regular and contracted edges. This
concludes the first phase.

During the second phase, we will expand any other edge
and finally retrieve the full path P 0 in G. As regular edges are
immediate leftovers from the original graph G, they cannot
be resolved any further. However, all contracted edges need
to be expanded to their non-contracted counterparts. Given
a contracted edge e(u, v) between two nodes u, v on layer k,
we drop to layer k − 1 to expand it. Due to the construction
of the SLG it is guaranteed that there is either a direct edge
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Figure 5. Shortest Path Query example. The goal is to find the shortest
path, indicated by the dashed blue line between the two blue nodes in
the topmost row. First, the highest level on which both nodes are not
contracted is identified and their respective cells (top row, orange) of
the SLG are combined with the TG to find the shortest path using only
intermediate TG cells (in black). Then, all-pair shortest path edges (red
edge in top row) of the shortest path in the TG are resolved to their
respective edges in SLG cells (middle row). Finally, each contracted
edge (green edges on shortest path) are resolved using lower level
representations (bottom row). This process is invoked recursively until all
remaining contracted edges are resolved.

on layer k− 1 connecting the two nodes, or a neighbor z that
resides in between. If both u, v belong to the same cell c on
layer k−1, the path expansion can thus be handled by c itself.
In some cases, u and v belong to two separate cells. However,
the discrete layer structure with a suitable scaling of cluster
sizes and the regularity of the cluster centers guarantees that
only direct neighbors need to be accessed to expand the path.
Recursively applying edge expansion with ultimately lead to
the shortest path P 0 in G.

Although this approach may not yield the best perfor-
mance with respect to execution time, it shows the capability
for parallelization or distribution of the processes in future
work. Each of the cells can potentially be moved to a
separate distinct host, for instance using peer to peer network
technology. In this case, the shortest path may be distinct
from the shortest transmission routing and only necessary
SLG cells have to be queried for detailed path information.
The distribution of the TG is not as straightforward, though,
and will require more work in the future.

Algorithm 4 Shortest path query: getPath
Input source and target nodes s, t ∈ V
Output P 0 - shortest path between s and t
k ← lowest common level of s and t
[cs, ct]← cells on level k which include s and t
Q = Tk ∪ Sk

cs ∪ Sk
ct . merge sub-graphs

PQ ← shortest path in Q . for instance with Dijkstra
P k ← PQ with expanded APSP edges . 1. phase
P 0 ← P k with recursively expanded edges . 2. phase
return P 0

5 COMPLEXITY ANALYSIS

In the following section we will analyze the run-time com-
plexity of our algorithms. We are interested if the algorithms
presented in Sections 3 and 4 introduce any severe theoretical
issues that have to be addressed. As our focus is not an
improvement with respect to execution times but a simple

distribution scheme we wish to stay within Dijkstra execution
bounds for any operation. Further, we want to understand
which impact edge and node count have during construction
of the data structures.

The construction consists of building two data structures,
namely a Sparse Layered Graph S and a Transition Graph
T, which we will analyze separately. We will give lower and
upper bound estimates of the worst case run-time for the
construction on a single computer in a sequential manner,
and show why this analysis strongly depends on the graph
G. Afterwards we will quickly discuss the average run-time
complexity of the construction when using suitable data
structures to hold the edge and node information. Then
we will address the average case query times and, finally,
give an outlook to the complexity in a distributed setting.
We wish to remind the reader that update operations on
a regular array require, in theory, O(N) operations both
in the average and the worst case. In contrast, the average
update operations for a hash table are close to O(1), while
the worst-case complexity still resides in O(N). During the
analysis we will use the set operators to identify relationships
between complexity classes. Furthermore, we will usually
omit the cardinality operator | · | when it is clear from context
to improve legibility. For example, O(c · V ) denotes the set
of functions that run in linear time with constant c on the
number of nodes in V , hence reside in O(V ) which may be
expressed as O(c · V ) ⊆ O(V ).

5.1 Construction of the Sparse Layered Graph
As all necessary operations to construct S are the same in
each cell and layer, we will reduce the nomenclature of
all required variables to make the analysis more accessible.
Hence, we will start by denoting the set of vertices as V and
the set of edges as E without any sub- or superscript indexes.
As soon as we extend the formal analysis to multiple cells or
layers, we will re-introduce those indexes.

5.1.0.1 Dependency on the topology of G: A naive
implementation of Algorithm 1 might use at least two
tables. One to store edge information, another to store
node information. Each of these tables will be sorted before
contracting nodes, allowing binary search to locate specific
elements in logarithmic time. For instance, a table containing
the edge information e = (u,w) ∈ E will be sorted on both
node indexes, such that a specific edge can be found in
O(logE) time. Likewise, the table of nodes will be sorted.
Conclusively, the run time complexity to pre-sort the data
within a cell will take

O(E logE + V log V ) (1)

time. However, for any non-degenerate case of G, we can
assume that V ≤ E, for which Equation 1 simplifies to

O(E logE + V log V ) ⊆ O(2 · (E logE))

⊆ O(E logE) .
(2)

Real-world graphs or networks, however, often show the
tendency to be scale-free. This means that most nodes in G
will be connected to only few other nodes, and only rarely
a node will be connected to many other cells. Essentially,
the distribution of node-degrees deg(v),∀ v ∈ V follows a
power-law in realistic scenarios. Accordingly, we suggest to
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store information differently as soon as a scale-free network
can be expected.

For scale-free networks, Algorithm 1 uses an array to
store node information and an adjacency list that represents
the edge information for each node. The array of nodes can
be sorted in O(V log V ) time, and each of the adjacency lists
will require at most O(degm(V ) log(degm(V )) time, where
degm(V ) := max{deg(V }. Due to the assumption that 1 ≤
deg(v) � V holds in most real-world graphs, we can give
the amortized run-time complexity of

O(V log V + V · degm(V ) · log(degm(V )))
amortized
⊆ O(V log V + V log V ) ⊆ O(2 · V log V )

(3)

to sort the data. Furthermore, the assumption allows us to
expect an amortized retrieval time of

O(1 + log V ) ⊆ O(log V ) (4)

for adjacency information for any node.
Consequently, it is important to consider which type of

data will be stored in S. Although the following analysis is
mostly based on the assumption to store scale-free networks,
this will not have a severe impact on the run-time complexity
of the node contraction.

5.1.0.2 Node Contraction: We first consider the
contraction of a single node v ∈ V , given any neighbors
u,w ∈ V . For any such pair, we will remove the edges from
each neighbor to v and either update an existing or introduce
a novel edge. This requires to perform at most O(deg(v))
operations. With Equation 4 we can combine the estimate to
yield

O(log V + deg(v)) ⊆ O(log V + E) (5)

worst case time requirement to contract a single node v.
However, for scale-free networks deg(V ) will usually be
a small number 1 ≤ deg(V ) � V ≤ E for which we
can expect a run-time behavior which is bounded from the
bottom by

O(log V + deg(v))
amortized
⊇ O(log V + 1) . (6)

To understand the worst case bounds of the final algo-
rithm, we will consider the two extremal cases that may
occur during contraction of v ∈ V . The first case is when
u,w ∈ V are the only neighbors of v, by which the lower
bound time complexity is governed by Equation 5 for any
node v. As we flag all neighbors u,w of v as non-contractable,
we will perform this operation at most V

2 many times, which
yields the overall lower bound of

O(
V

2
E) ⊆ O(V · E)

V≤E
⊆ O(E2) (7)

to contract all nodes v ∈ V within a single cell. However, for
the amortized case presented in Equation 6 we may achieve

O(V · (log V + 1))
amortized
⊆ O(V · log V + V ) (8)

logarithmic run time complexity to contract all nodes in
many cases.

The second extreme case to consider is if v is connected to
all other nodes u,w ∈ V , but @e(u,w) ∈ E for any u,w. In
other words, the graph exposes a star topology and deg(v) =

E. Contracting v will thus require to introduce E(E−1)
2 many

new edges, while removing E old edges. This leads to an
upper bound estimate with a cubic run-time of

O(E + E
E(E − 1)

2
) ⊆ O(E3) , (9)

due to the O(E) time requirement to update an existing
array in a naive way. Obviously, this can be improved to

O(E +
E(E − 1)

2
) ⊆ O(E2) (10)

run-time requirements with the help of suitable data struc-
ture and updating edge information only once. Equation10
represents the worst upper bound for the amortized example
as well. In fact, all other nodes u ∈ V, u 6= v will be marked as
non-contractable and won’t be considered anymore, Equation
10 therefore is a tight upper bound.

5.1.0.3 Multiple Cells and Layers: We will now
proceed to extend the analysis to include multiple cells
and layers, and give estimates about the naive worst case
run-time complexity Ω and for the amortized worst-case
complexity Ωamortized.

To understand the simplification, we require the following
observations. Equations 7 and 10 show that the run-time com-
plexity can be approached by O(E2) both from bottom and
top. Hence we can focus on additional steps that are required
to form a single layer. In an sequential implementation,
Algorithm 1 sorts all existing cells to improve access times.
Obviously, this can be achieved in O(Ni logNi) time for Ni

cells on layer i. Furthermore, each node v ∈ Vi gets assigned
to its closest cell. This is achievable in O(Vi logNi) time
given a suitable data structure, e.g. a kd-tree. In addition, we
assumed L to be a small number,Ni � Vi and thusNi � Ei,
and that Ni ≤ Ni+1 holds. We will use E := maxiEi and
V := maxiVi in the remainder of this paragraph.

Given the preconditions, we can now finally assess the
worst-case run-time complexity, which is given by

Ω = O(N0 logN0 + V0 logN0+
L−1∑
i=1

(
Ni logNi + Vi logNi +Ni · E2

i

)
)

⊆ O(L · E2) ⊆ O(E2) .

(11)

The first two terms describe sorting cells and assigning
nodes to cells on the bottom layer, on which no contraction
will be performed. Conclusively, the run-time complexity is
completely governed by the maximal number of edges in S,
because Ni and L quickly become negligible for a large E.

For the amortized analysis, we can argue similarly but,
using Equation 6 and 8, achieve a lower and upper bound of

O(V log V + E) ⊆ Ωamortized ⊆ O(E2) . (12)

Hence, the lower bound run-time will be mostly governed by
the number of nodes. For real-world data we would expect
to be close to the lower bound of the amortized run-time
complexity in many cases.

5.1.0.4 A short discussion about the average case:
Until now we have mostly focused on the worst case
time complexity of our algorithm. With an improved data
structure such as a hash table, we could reduce the effective
and average run-time of the implementation. A hash table
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allows to insert and search in O(1) time, essentially reducing
Equations 1 – 4 to O(1) as well. Furthermore the upper
bound presented in Equation 9 will directly collapse to
Equation 10. The impact is less dramatic in the theoretical
assessment of the other parts, though, as they remain as
derived above. However, we suggest to use hash tables
to store all relevant data if run-time performance is an
important criteria.

5.2 Building of the Transition Graph
Following the description of Algorithm 2, the TG construc-
tion operates on each cell of S. Although the TG construction
can be nested within the SLG construction, we will treat the
TG construction separately here. Hence, we will first analyze
some cell c on a layer i for which we define the node and
edge set as V c

i and Ec
i , respectively.

With an appropriate data structure, for instance a lookup
table, Sc

i can be extracted in O(1) time. Similarly, each
border node can be identified in amortized O(1) time. The
computation of the all-pair shortest path is performed by
running Dijkstra’s algorithm on each border node. Therefore
the run-time complexity to generate one cell of the TG is

Bc
i (Ec

i + V c
i log V c

i ) (13)

The assumption of scale-free networks with uniformly
distributed nodes leads to the approximations of

V c
i ≈

V S
i

Ci
, Ec

i ≈
ES

i

Ci
, Bc

i ≤ Bi (14)

for all cells. This leads to the overall run-time complexity of

O(
L−1∑
i=0

CiBi

(ES
i

Ci
+
V S
i

Ci
log

V S
i

Ci

)
)

= O(
L−1∑
i=0

Bi

(
ES

i + V S
i log

V S
i

Ci

)
)

(15)

to construct the TG for all cells and layers. Due to Bi �
Vi, and with E := maxES

i and V := maxV S
i this can be

amortized to

O(
L−1∑
i=0

ES
i + V S

i log
V S
i

Ci
)

⊆ O(
L−1∑
i=0

ES
i + V S

i log V S
i )

⊆ O(L · (E + V log V )) .

(16)

Clearly, the TG construction is dominated by the maximal
number of vertices in a cell and not the overall number of
vertices in S.

5.3 About Query Time Complexity
The distance and path queries are certainly sub-optimal
in their presented form. For instance, they only locate the
highest layer k on which the source and target nodes are still
available and will not climb to higher layers for increased
speed. Because future work will improve significantly on
this, we will only assess and finally discuss the run-time
complexity of the queries in their current version as pre-
sented in Algorithms 3 and 4. This is necessary to evaluate

if the proposed techniques deem feasible for their future
purpose in distributed scenarios, or if there are significant
disadvantages inherent to the data structures.

Given a source s, a target t, and only a single layer k = 0,
the worst case for distance estimation appears when all of
the cells of this layer have to be traversed. The complexity
follows from computing a shortest path PQ in Q. According
to Algorithm 3, Q is defined as the union of Tk with the
subgraphs induced by csk and ctk, the two cells of Sk in which
s and t reside. Computing Dijkstra’s algorithm form s to t in
Q is theoretically at least as fast or faster than computing the
shortest path in Sk, because Tk is, on average, sparser than
Sk due to construction. However the specific way the union
to form Q is implemented in a practical implementation may
yield significant penalties. Furthermore if the TG consists of
only one or two cells, the distance computation will inflate
to path queries within cs and ct.

Path queries require additional computations to expand
edges. Due to construction of S and T, an edge will be
either regular, contracted, or an APSP edge. First, any APSP
edge on the shortest path PQ will be expanded, generating
a shortest path P k

S in Sk. The edge expansion is performed
by shortest-path computation within the corresponding cell
in Sk. Given that PQ spans ζQ many cells in Q, for which
0 ≤ ζQ ≤ Ck − 1 holds, this leads to

O(ζQ
(ES

k

Ck
+
V S
k

Ck
log

V S
k

Ck

)
) . (17)

Empirical data suggests that ζQ ≈ Ck

2 , for which the average
run-time complexity of Equation 17 then simplifies to

O(ES
k + V S

k log
V S
k

Ck
) ⊆ O(ES

k + V S
k log V S

k ) . (18)

Finally, we need to resolve remaining contracted edges
in P k

S to retrieve the expanded shortest path P 0
S . Recursively

expanding contracted edge will require at most 2k−1 ·(P k
S−1)

computations in lower-level cells. More specifically, we will
expand each contracted edge into two novel contracted edges
on every lower layer during the worst case scenario until we
reach layer 0.

We note that the overall-worst (or nightmare) case ζQ =
Ck − 1 exists, though. A properly prepared input graph G
which resembles a space-filling curve could be contracted in
such a way that the resulting (sparse) graph again resembles
a space-filling curve. Consequently, each cell on each layer
needs to be queried. Fortunately, such a path usually won’t
appear in real-world data.

We conclude that there exist three cases for data retrieval.
For the expected average case our technique will expose
speed-ups although this was not the original focus of our
work. In the worst case, our method will show only marginal
theoretical degradations (if at all) despite the increased
complexity. During the nightmare case, queries on our data
structure will be significantly slower than existing methods
due to the curse of recursive invocation of shortest-path
computation. Conclusively our methods are suitable for
future purposes as they do not introduce computational
disadvantages in the average case.
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5.4 Short Note on Complexity in a Distributed Setting
To extend the complexity analysis to investigate the theoreti-
cal speed-up or slow-down of our technique in a distributed
setting, it would be necessary to consider employing a
certain number, ideally close to the number of cells, of
independent processing units and addressing the number of
messages that have to be sent into account. Furthermore, the
construction of the SLG itself is iterative as one layer needs to
be formed after another which imposes a certain delay of the
construction. However, we expect that updates to a single
cell in a specific layer after an initial SLG was already formed
will require to update only few cells that propagate through
the hierarchy. As the real number of messages that have to
be passed depends on the employed distribution scheme,
we will postpone the complexity analysis of a distributed
implementation to future work.

6 EXPERIMENTAL CHARACTERIZATION

To experimentally characterize our method we developed
prototypes in MATLAB and C++. We used the implemen-
tations for evaluating the accuracy and correctness of the
algorithms as well as to test various parameter settings, for
instance the initial cell size or relative cell size ratio between
consecutive layers. We generated artificial input data in form
of planar graphs with 200000 vertices that were uniformly
distributed. We examined graphs with different levels of
connectivity.

All queries returned the correct result in the sense that
all queried distances or paths from a source to a target node
corresponded to results obtained by Dijkstra’s algorithm
executed on the original graph G.

We then analyzed the impact of several cell size ratios.
Remember that the ratio γj is defined as γj =

|Cj |
|Cj−1

≤ 1. We
expected γj not to have any significant impact on the average
number of nodes or edges in the SLG. This somewhat counter-
intuitive statement can be explained by the node contraction
step, which will only stop at border or non-contractable
nodes. Border nodes themselves will only be a small fraction
of the overall number of nodes in most graphs and especially
in the artificially generated data. That our assumption was
indeed correct is shown in Figures 6 and 8. The increase
in the number of edges for higher layers in the SLG can
be explained by the contraction process as well. During the
contraction, potentially non-connected vertices will receive
novel edges. After several iterations, the graph on a resulting
layer will consist of many strongly connected nodes.

The assumption that the cell size ratio has no impact is
not true for the TG, though. Larger cells in the SLG mean
that the ratio between border nodes and regular nodes is
smaller. This leads to smaller numbers of nodes in the TG
for smaller γj . This behavior is depicted in Figures 7 and 9.
The explanation for increased numbers of edges for some
cell ratios is the same as for the SLG.

A very similar behavior could be observed for the impact
of the number of initial cells and, therefore, initial cell size on
layer 0 (no data shown). Given uniformly distributed input,
the number of nodes in the SLG will drop quickly during the
contraction in the first layer as most contractable nodes will
be removed. However, subsequent steps will only be able
to contract roughly the same number of nodes regardless of
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Figure 6. Average number of nodes in the Sparse Layered Graph for
several cell size ratios. The average number of nodes in the SLG does
not depend on the exact cell size ratio.
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Figure 7. Average number of nodes in the Transition Graph for several
cell size ratios. In contrast to the SLG, the average number of nodes in
the TG depends on the exact cell size ratio.

the initial cell size with border cells being the only exception.
Likewise for the cell size ratio, the number of nodes and
edges in the TG will however be influenced by the number
of initial cells. The reason is the same as stated for the cell
size ratio.

With respect to the execution speed, our prototype is
currently slightly slower than Dijkstra’s algorithm on a
corresponding layer, but still within real-time bounds and
time requirements for path planning in robotics scenarios
(data not shown). There is an obvious reasons: the im-
plementation focus was not on execution speed but on
algorithmic correctness. Therefore we allowed the usage
of sub-optimal containers to hold parts of the data structure
to be able to examine the algorithms in detail. Furthermore,
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Figure 8. Average number of edges in the Sparse Layered Graph for
several cell size ratios. As expected, the number of edges does not
depend on the cell size ratio. The increase of number of edges in higher
layers can be explained by the contraction process, which leads to graphs
which are stronger connected on higher layers.
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Figure 9. Average number of edges in the Transition Graph for several
cell size ratios. Likewise the number of nodes, the number edges strongly
depends on the cell size ratio.

the implementation currently requires a cumbersome data
lookup during the getDist computation to merge data from
S and T. We expect speed improvements as soon as these
issues are addressed.

7 CONCLUSION & FUTURE WORK

In this work we presented our results towards distributed
routing. Our goal was not a run-time improvement of
existing methods, but to find, analyze, and characterize
a solution that has the potential for locally distributed
computing. This means that most operations should be
performed on a small subset of the overall data that can be

distributed. We developed data structures that are strongly
inspired by biological neural networks that are essential
for spatial navigation in rodents. We analyzed the run-
time complexity of the algorithms that construct said data
structures and operate on the stored data. The results
show that the construction and query algorithms reside
in good or acceptable run-time complexity. The discrete
layer structure and the regular clustering of the data will
make it comparatively easy to distribute it across several
participating hosts.

Future work will therefore concentrate on improved
query mechanisms and a fully distributed implementation.
The construction mechanism and data retrieval of our
data structure have remarkable similarities to peer-to-peer
network technology. Consequently, we will analyze if our
data structure is implementable as a so called overlay to
existing peer-to-peer network protocols or, if not, which
extensions are required. Meanwhile, we seek to find a smart
way to distribute the Transition Graph, which in its current
description is non-trivial.

Another major focus of future work will entail dynamic
updates to the data. Ultimately, the data structures should
be employed in distributed robotics scenarios with massive
numbers of agents, all of which may generate new data. We
think that, due to the regularity of the cluster arrangement,
novel data will have to be processed only locally in a few
cells and huge changes to the data can be avoided.
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